

11-01-2010

Deliverable DJ3.3.1:
Composable Network Services use
cases

Deliverable DJ3.3.1

Contractual Date: 30-09-2009
Actual Date: 11-01-2010
Grant Agreement No.: 238875

Activity: JRA3
Task: T3
Nature of Deliverable: R (Report),
Dissemination Level: PU (Public)
Lead Partner: REDIRIS
Document Code: GN3-09-198
Authors: Diego R. Lopez (RedIRIS), Ian Thomson (DANTE), Licia Florio (TERENA), Joan-Antoni García (i2CAT),

Eduard Grasa (i2CAT), José M. Alcaraz (University of Murcia), Antonio G. Skarmeta (University of Murcia),
Mary Grammatikou (GRNET-ICCS), Constantinos Marinos (GRNET-ICCS), Vassiliki Pouli (GRNET), Manuel
Bernal (University of Murcia), Gregorio Martínez (University of Murcia), Cándido Rodríguez (RedIRIS), Maciej
Glowiak (PIONIER), Maciej Strozyk (PIONIER), Bartlomiej Idzikowski (PSNC), Zbigniew Oltuszyk (PIONIER),
Jan Rucizka (CESNET), Remco Poortinga (SURFnet).

Abstract

GEMBus will use the SOA paradigm to provide a framework to define, discover, access and combine services in the GÉANT multi-domain
environment, spanning over different layers from the infrastructure up to application elements. This document presents a list of the use
cases considered by the GEMBus team to illustrate the possibilities that an infrastructure like this will be able to offer.

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

Table of Contents

0 Executive Summary 1

1 Introduction 2
1.1 GEMBus Goals 4
1.2 GEMBus Use Cases 5

2 GEMBus and Grid Infrastructures: KoDaVis application 7
2.1 System-wide Functional View 7

2.1.1 Context Diagram 9
2.2 Actors of the System 10
2.3 Functional View: Use Cases 10
2.4 Dynamic View 11

2.4.1 Virtual Organisation Creation (Grid generic) 11
2.4.2 Visual Analysis of Data (KoDaVis application) 12
2.4.3 Collaborative Data Visualisation (KoDaVis application) 13

3 Smart Autonomous Network Services 14
3.1 System-wide Functional View 14

3.1.1 Context Diagram 15
3.2 Actors of the System 16
3.3 Functional View: Use Cases 16
3.4 Dynamic View 17

3.4.1 Define Policies 17
3.4.2 Start Autonomous Manager 18
3.4.3 Manage Volumes 19
3.4.4 Manage Security 19

4 Digital Repositories 20
4.1 System-wide Functional View 20

4.1.1 Context Diagram 21
4.2 Actors of the System 22
4.3 Functional View: Use Cases 22
4.4 Dynamic View 23

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

iii

4.4.1 Content Conversion and Submission 23
4.4.2 Information Retrieval 24
4.4.3 Repository Management 24

5 Artistic Performances 25
5.1 System-wide Functional View 25

5.1.1 Context Diagram 25
5.2 Actors of the System 27
5.3 Functional View: Use Cases 28
5.4 Dynamic View 29

5.4.1 Infrastructure Deployment 29
5.4.2 Access to the Data Stream 30

6 Collaboration Platforms 32
6.1 System-wide Functional View 32

6.1.1 Context Diagram 34
6.2 Actors of the System 36
6.3 Functional View: Use Cases 36
6.4 Dynamic View 37

6.4.1 Composition of Services 37
6.4.2 Semantic Composition of Services 37

7 Direct Access to PerfSONAR 39
7.1 System-wide Functional View 39

7.1.1 Context Diagram 39
7.2 Actors of the System 40
7.3 Functional View: Use Cases 41
7.4 Dynamic View 41

7.4.1 Monitoring Initialisation 41
7.4.2 Monitoring Process 42
7.4.3 Monitoring Ending 42

8 AutoBAHN/PerfSONAR Integration 44
8.1 System-wide Functional View 44

8.1.1 Context Diagram 44
8.2 Actors of the System 45
8.3 Functional View: Use Cases 46
8.4 Dynamic View 47

8.4.1 Path Reservation 47

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

iv

8.4.2 Path Resignation 49

9 Real-time Collaboration 51
9.1 System-wide Functional View 51

9.1.1 Context Diagram 52
9.2 Actors of the System 53
9.3 Functional View: Use Cases 54
9.4 Dynamic View 55

9.4.1 Meeting Deployment 55
9.4.2 Accessing the Meeting 56

10 Scientific Workflows 58
10.1 System-wide Functional View 58

10.1.1 Context Diagram 60
10.2 Actors of the System 61
10.3 Functional View: Use Cases 61
10.4 Dynamic View 62

10.4.1 Execute Workflow 62
10.4.2 Invoke Web Service 63

11 Conclusions 64

References 65

Glossary 67

Table of Figures

Figure 1.1: ESB representation 3
Figure 1.2: GEMBus Model 5
Figure 2.1: Generic context for Grid use case (OGSA architecture) 8
Figure 2.1: Context Diagram for the grid infrastructure use case 9
Figure 2.3: Grid infrastructure use case diagram 11
Figure 3.1: Components of a NSS autonomous system 15
Figure 3.2:Context Diagram for the AC use case 16

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

v

Figure 3.3:Autonomous services use case diagram 17
Figure 4.1: Context Diagram for the digital repository use case 21
Figure 0.22: Digital repository use case diagram 23
Figure 5.1: Context Diagram for the artistic performance use case 26
Figure 5.2: Artistic performance use case diagram 29
Figure 6.1: General semantic system architecture 34
Figure 6.2:: Context Diagram for the collaboration platform use case 35
Figure 6.3: Collaboration platform use case diagram 36
Figure 7.1: Context Diagram for the direct access to PerfSONAR use case 40
Figure 7.2: Direct access to PerfSONAR use case diagram 41
Figure 8.1: Context Diagram for the AutoBAHN/PerfSONAR use case 45
Figure 8.2: AutoBAHN/PerfSONAR integration use case diagram 47
Figure 8.3: Sequence diagram for the reservation with monitoring process 49
Figure 8.4: Sequence diagram for the resignation process 50
Figure 9.23: Context Diagram for the real-time collaboration use case 52
Figure 9.24: Real-time collaboration use case diagram 55
Figure 10.1: Context Diagram for the CLARIN workflow use case. 60
Figure 10.2: Generic service invocation. 61
Figure 10.3: CLARIN workflow use case diagram 62

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

1

0 Executive Summary

The Internet is changing. It is moving from the original model of a network layer capable of dynamically
selecting a path from the originating source of a packet to its ultimate destination to a more dynamic and
complex structure. This new structure is expected to become service-aware, meaning greater user involvement
(user-centric paradigm), more intelligence built into the network (control-plane) to use it in a commodity-fashion,
and to allow for a dynamic composition of resources needed to provision a service.

Typically, the greater level of flexibility and independence among the various components is achieved by
decoupling the services’ definitions and their business functions from the underlying physical implementations.
Architectures that fulfil these characteristics are called Service Oriented Architectures (SOA). The benefit of
SOA is that components are not rigidly integrated, allowing for a re-organisation of them whenever needed.

The JRA3 Composable Network Services task will use this paradigm to provide a framework to define, discover,
access and combine services in the GÉANT multi-domain environment. It will span over different layers, from
the infrastructure up to application elements. This framework will adhere to the Enterprise Service Bus (ESB)
design pattern. This will allow the integration of services and applications, and provide a set of functionalities
that are comparable to those of a physical bus that carries bits among devices in a computer. For this reason
the task has been renamed as GEMBus (GÉANT Muti-domain Bus).

The goal of GEMBus is to establish seamless access to the network infrastructure and the services deployed
upon it, using direct collaboration between network elements, and therefore providing more complex
community-oriented services through their composition. The final result will be the availability of network
middleware for seamless access to the network infrastructural services in the form of composable network
services.

This document presents a list of the use cases considered by the GEMBus team to illustrate the new
possibilities that an infrastructure like this will be able to offer. The use cases have been selected to cover the
widest range of application domains and potential user communities, together with an ample set of individual
services that cover the different layers in a networking environment. The GEMBus team plans to make
available prototypes for the described use cases through the lifetime of the project. However, the usual caveats
in such a dynamic environment like this apply, meaning that the descriptions presented here are subject to
change as a better understanding of the technologies involved and additional requirements from the potential
user communities become available.

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

2

1 Introduction

The competitive edge of research and education networks is defined by their ability to offer services beyond
those available in the market. A key paradigm in this innovation process is seamless collaboration, moving
toward an open cloud of services that users can freely compose, not only to access network resources but also
to define these resources and allow others to share them, thereby building collaborating communities.

New services are becoming available for the end-user (e.g. repositories, storage facilities and HD
videoconference). At the same time, daily work makes more and more usage of online collaborative tools, such
as wikis, content management systems and others.

As indicated by many experts, the Internet is changing, evolving from the original model of a network layer
capable of dynamically selecting a path from the originating source of a packet to its ultimate destination to a
more dynamic and complex structure. This new structure is expected to become service-aware, meaning
greater user involvement (user-centric paradigm), more intelligence built into the network (control-plane) to use
it in a commodity-fashion, and a dynamic composition of resources needed to provision a service.

Typically the greater level of flexibility and independence among the various components is achieved by
decoupling the services’ definitions and their business functions from the underlying physical implementations.
Architectures that fulfil these characteristics are called Service Oriented Architectures (SOA). The benefit of
SOA architectures is that components are not rigidly integrated, allowing for a re-organisation of them
whenever needed.

Many experts identify the key concept in SOA as the possibility to have independent services with defined
interfaces that can be called to perform their tasks in a standard way. This is without a service having
foreknowledge of the calling application, and without the application having or needing knowledge of how the
service actually performs its tasks.

An analogy for the SOA paradigm is the composition of music. In this analogy, the functions performed by
various services represent digital notes, which can be composed to create different melodies. As a composer
can create different melodies using the same notes, or adding new notes to existing ones, a SOA can provide a
different service composing existing functionalities or components. Each service has a well-defined interface
that is accessible across a distributed environment.

One of the key components of a SOA is the concept of the Enterprise Service Bus (ESB). As the term
suggests, the functionalities of an ESB are comparable to those of a physical bus that carries bits among
devices in a computer. In an architecture that uses an ESB, all communications are handled through it and the
ESB acts as a broker between applications and services.

Introduction

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

3

Figure 1.1 shows an abstract view of the ESB:

Figure 1.1: ESB representation

An ESB offers a set of infrastructure capabilities for handling communications between service requesters and
service providers. In particular, the ESB is able to communicate with the requester using the requester’s
preferred interface (for instance Web Services, FTP, and others), while allowing the provider to use a different
interface. This means that the set of elementary functions have been isolated and can be provided by different
entities; the services. All those services communicate with each other using well-defined protocols based on
XML message exchange using standardised message exchange patterns.

One of the ESB’s responsibilities is to translate the information received by a service’s requester in the format
expected by the service’s provider. The ESB is also responsible for routing the request to reach the right
service, and for assigning the necessary priorities among requests. This process of handling requests and
prioritising them is called “mediation”.

In more sophisticated architectures the ESB also performs monitoring and statistics functions; for example
providing information on how often a particular service is requested, by whom, and how many of the requests
had problems.

Another advanced feature that some ESBs provide is the support for composition and coordinated execution of
services, forming long-running executable business processes.

The main benefits of an ESB are:

Introduction

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

4

• An ESB allows for loosely coupled services, the benefit of this being that new services/functionalities
can be easily added to the existing infrastructure.

• Simplification and standardisation of the interfaces used by the service’s requesters and the service
providers.

• Services can also be requested by other systems, because of the adoption of the ESB.

1.1 GEMBus Goals

The JRA3 Composable Network Services task (T3) will use the ESB paradigm to provide a framework to define,
discover, access and combine services in the GÉANT multi-domain environment, spanning over different layers
from the infrastructure up to application elements. For this reason the task has been renamed as GEMBus:
(GÉANT Muti-domain Bus).

The goal of GEMBus is to establish seamless access to the network infrastructure and the services deployed
upon it, using direct collaboration between network elements, and therefore providing more complex
community-oriented services through their composition. The final result will be the availability of network
middleware (APIs) for seamless access to the network infrastructural services (in the form of composable
network services).

GEMBus will therefore facilitate the model of building by composition as indicated in Figure 1.2:

Introduction

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

5

Figure 1.2: GEMBus Model

The figure deliberately includes references to commercial environments. This is dependent upon the industry
expressing its commitment to the SOA architecture and the ESB concept in the future (as demonstrated by
well-established initiatives, such as IPsphere1). Therefore, the development of GEMBus implies a better and
more complete integration, not only among academic networks worldwide but also with commercial network
infrastructures.

1.2 GEMBus Use Cases

The following sections present a list of the use cases considered by the GEMBus team to illustrate the
possibilities that an infrastructure like this offers, together with the requirements that they impose on the
features GEMBus has to provide. The use cases have been selected to cover the widest range of application
domains and potential user communities, together with an ample set of individual services that cover the
different layers in a networking environment. When selecting these particular cases, the group has taken a
rather pragmatic approach, incorporating those application domains that could obtain a high potential benefit of
the SOA paradigm in their usage of network infrastructures, according to the group’s experience as network
service providers and researchers

1 http://www.ipsphereforum.org/

Introduction

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

6

The GEMBus team plans to make prototypes available for the described use cases throughout the lifetime of
the project. However, in such a dynamic environment the descriptions presented here are subject to change as
the technologies involved become better understood, and additional requirements from the potential user
communities become available.

A specific subset of these use cases will be applied in the next phase of GEMBus development (the definition
and selection of its supporting ESB framework), together with the interface requirements that individual services
and its multi-domain nature impose. Furthermore, this validation process will lead to the availability of
prototypes for the selected use cases.

Each use case is described according to a common structure:

• An introduction describes the nature of the use case and provides a general description of its context
and goals.

• A context diagram is used to make a graphical representation of this general description of the use case.
• The actors in the use case are defined.
• A functional description (in terms of interactions among those actors) is provided, both in a tabular form

and in terms of a UML diagram.
• A more detailed specification of the dynamic behaviour of the actors in each use case is included in a

tabular form.

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

7

2 GEMBus and Grid Infrastructures:
KoDaVis Application

2.1 System-wide Functional View

A Grid [GRID2] can be defined as a system that coordinates distributed resources using standard, open,
general-purpose protocols and interfaces to deliver high qualities of service. It also integrates and coordinates
resources and users that live within different control domains (for example, the user’s desktop versus central
computing, different administrative units of the same company, and/or different companies), and addresses the
issues of security, policy, payment, membership, etc. that arise in these settings. Otherwise, we are dealing
with a local management system.

A Grid is built from multipurpose protocols and interfaces that address such fundamental issues as
authentication, authorisation, resource discovery, and resource access. It is important that these protocols and
interfaces are standard and open. Otherwise, we are dealing with an application-specific system. A Grid allows
its constituent resources to be used in a coordinated fashion to deliver various grades of quality of service
(relating, for example, to response time, throughput, availability, and security), and/or co-allocation of multiple
resource types to meet complex user demands, so that the utility of the combined system is significantly greater
that the sum of its parts.

Key to the realisation of this Grid vision is standardisation. This is so that the diverse components that make up
a modern computing environment can be discovered, accessed, allocated, monitored, accounted for, billed for,
etc., and in general managed as a single virtual system, even when provided by different vendors or operated
by different organisations. Grid middleware is intended to provide this layer of Grid service harmonisation and
orchestration. However, many times Grid workflows may require the use of services from existing, third party
systems which are not fully compatible with the Grid middleware, due to specific implementation technology.

Standardisation is critical for the Grid as it aims to create interoperable, portable, and reusable components and
systems. It also contributes to the development of secure, robust, and scalable Grid systems by facilitating the
use of good practices. The Open Grid Services Architecture (OGSA) [OGSA] is a service-oriented architecture
that addresses this need for standardisation by defining a set of core capabilities and behaviours that address
key concerns in Grid systems. GEMBus should consider the existing Grid standards, and specially OGSA.

GEMBus and Grid Infrastructures: KoDaVis Application

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

8

Figure 2.1: Generic context for Grid use case (OGSA architecture)

In this particular use case, OGSA is used by KoDaVis [KODAVIS] application, which stands for Collaborative
Data Visualisation. Climatologists use KoDaVis to handle huge collections of data. This data is partly measured
(as provided by the European Centre for Medium-Range Weather Forecasts, ECMWF), and partly data coming
from simulations performed on supercomputers that simulate different scenarios based on the measured data.
A typical dataset contains 1 terabyte of data. Such datasets are stored at the supercomputer site and not locally
at the scientists’ lab. For visual analysis, only part of the data is accessed, but which part of the data needs to
be accessed during the exploration session cannot be fully specified in advance.

The Components of the OGSA in the KoDaVis use case [OGSAUC] are the following:

• Client (based on GPE): A GUI User-Client implemented in Java. It is based on the Grid Programming
Environment (GPE) developed by Intel.

• Gateway: A single point of entry for the Client to access server functions at a specific Unicore
[UNICORE] site. The Gateway checks the users X.509 certificate for validity (issued by a trusted CA),
provides the list of available sites and services (service registry).

• Unicore Server: This component provides core services (also called atomic services) and additional
services available at a site. It uses the Unicore User Database (UUDB) to map the users X.509
certificates to user-IDs on the target systems (TS), where the user’s jobs are actually executed. It uses
a database called Incarnation Database (IDB) to map abstract job and resource descriptions to their
concrete values on a target system. The IDB is fed by the target system. There may be more than one
Unicore server at a single site (behind a single Gateway).

• TSS (Target System Service): A core service at the Unicore server. It provides access to a target
system.

• TSI (Target System Interface): An adapter typically running on the target system. It communicates
with the TSS and ADS and interacts with the local resource management system (batch system,
reservation system) of the target system.

GEMBus and Grid Infrastructures: KoDaVis Application

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

9

• TS (Target System): The actual Grid resource, e.g. a Cluster or HPC-system, or a visualisation system.
• ADS (Additional Services): Non-core services can be provided by the Unicore server as plug-ins,

called ADS. Examples for such services are the interface to a network reservation system, like ARGON
[ARGON], or services to manage interactive data connections for online visualisation and computational
steering.

• MSS (MetaScheduling Service): This component negotiates complex distributed resource requests of
a user on behalf of the user. In VIOLA [VIOLA], the MSS was implemented as a separate component.
In the European project Phosphorus (FP-6) [IST-PHOSPHORUS] it will be integrated more tightly into
the Unicore 6 architecture. It will act as a specific Unicore server that provides only a single service.

2.1.1 Context Diagram

The following diagrams show the context and components involved in this use-case:

Figure 2.2: Context Diagram for the grid infrastructure use case

Other components in the figure are:

GEMBus and Grid Infrastructures: KoDaVis Application

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

10

• Data Server: The KoDaVis data server is a parallel application that is executed on a target system (a
PC-Cluster in the testbed). It provides network access to a huge repository of climate and weather data.

• Visualisation System: The visualisation application that retrieves data from the data server for
interactive exploration. This application can be executed on any client. In this use case it will be
executed on a visualisation system with a reservation system (“online calendar”) capable of interacting
with a Unicore server through a specific TSI.

2.2 Actors of the System

2.3 Functional View: Use Cases

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Grid resource
announcement

Grid Site admin,
VO admin.

 Grid resource
announcement or
discovery Grid resource discovery VO admin,

Grid Site admin.

User accesses remote
data sets

Grid user,
Grid Site admin,
VO admin.

 Session initiation for
remote data
visualisation

Users access remote
data sets collaboratively

Grid user,
Grid Site admin,
VO admin.

Figure 2.3 presents the Grid infrastructure use case. VO admin administers Grid services from the whole virtual
organisation and decides which ones have to be registered in GEMBus.

Actor Description
VO Administrator The administrator of a Virtual Organisation. VO administrator

handles all necessary security infrastructure and middleware in
order to allow coordinated actions from users and other
administrators.

Grid Site Administrator The administrator of a local site contributing resources to the Grid
(computing power, storage, connectivity…). In this case, where the
KoDaVis server is located. Grid site administrator has a passive role
in service provisioning. It does enable the Grid infrastructure, but is
not taking active part in the service lifecycle.

Grid User (a.k.a. Scientist) The user that requests some grid resources to perform one or
multiple jobs; typically some complex distributed computation on a
computing grid or data mining/visualisation in a data grid.

GEMBus and Grid Infrastructures: KoDaVis Application

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

11

Figure 2.3: Grid infrastructure use case diagram

2.4 Dynamic View

2.4.1 Virtual Organisation Creation (Grid generic)

Use Case GB01 VO Administrator creates a Virtual Organisation
Description Either a Grid site administrator or an independent entity related to Grid

(user community) wants to create a Virtual Organisation. In this case, the
entity assuming the role of Virtual Organisation has to keep contact with
user communities either localised in a single corporative entity (enterprise,
university, research centre, etc.) or distributed (university campuses,
decentralised companies, etc.). Moreover, the VO administrator has to deal
with Grid site administrators in order to gather required localisation,
scheduling and connectivity information about Grid resources, which may
or may not be administered by a single Grid site admin.
Note: Typically, a VO administrator is born from a Grid site administrator,
which deals directly with a user community (i.e. in-company industrial
Grids).

GEMBus and Grid Infrastructures: KoDaVis Application

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

12

Use Case GB01 VO Administrator creates a Virtual Organisation
Actors VO admin., Grid Site admin.
Detection VO administrators discover Grid resource information.
Assumptions Grid sites exist and allow creation of VOs.
Preconditions Grid site administrators must publish their resources or allow requests

about them.
Steps Step 1. VO administrator is constituted from a Grid site administrator or

independent entity.
Step 2. VO administrator gathers information about available Grid
resources for its purposes.
Step 3. Grid site administrators provide VO administrator with all required
information.
Step 4. VO administrator is granted access to the various Grid resources.
Step 5. VO administrator composes a directory of services to be offered to
users.

Variations Step 4. If access to Grid resources requires special security actions:
proceed to former security protocol.
Step 5. If Grid resources are announced in any other way: proceed to
announce the resources in the suitable way.

Post-conditions After the process, a VO exists being administered by a VO Administrator
and offering Grid services.

Extends/Includes N/A
Non-Functional N/A
Issues N/A

2.4.2 Visual Analysis of Data (KoDaVis application)

Use Case GB02 User accesses remote data sets
Description A scientist wants to perform visual analysis of the data. He or she is using

a high-end visualisation facility at his/her own laboratory for the session, or
is visiting a remote site with a graphics workstation or may only have
his/her laptop at hand for a demo at a conference.
A session can be scheduled for a specific time or be spontaneous. In both
cases, the scientist starts his visualisation application and requests a data-
service from the system on which the data is stored. To get a reliable
service, he may also request to reserve network bandwidth between the
data service and his local visualisation device. The request would be: “I
need data-service for one client for ‘1 hour’ ‘now’ or ‘tomorrow starting at
any time between 14:00 and 17:00’. At the same time I need 700 Mbit/s
reserved bandwidth between the data-service and my location”.

Actors Grid User, Grid Site admin., VO admin.
Detection User logs in the Grid application (KoDaVis) and requests connection to a

selected KoDaVis server.
Assumptions A VO exists (where the KoDaVis server is located).
Preconditions User belongs to the VO.
Steps Step 1. User runs KoDaVis client locally.

Step 2. User uses KoDaVis client to get access to Grid resources and
schedule a data visualisation session.
Step 3. VO administrator or middleware provides user with the resource
allocation.
Step 4. User gets resources instantiated/configured and starts visualisation
session.
Step 5. User finishes visualisation session and releases Grid resources.

GEMBus and Grid Infrastructures: KoDaVis Application

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

13

Use Case GB02 User accesses remote data sets
Variations Step 3. If resources are not immediately available: VO administrator or

middleware provides the user with an alternative schedule or resources
availability

Post-conditions User is able to repeat the remote visualisation of data sets with KoDaVis
client using the same workflow described above.

Extends/Includes N/A
Non-Functional N/A
Issues N/A

2.4.3 Collaborative Data Visualisation (KoDaVis application)

Use Case GB03 Users access remote data sets collaboratively
Description Scientists at two or more different sites want to collaboratively explore the

data. They may be using different hardware and software environments for
that purpose. Nevertheless they want to communicate via video or at least
audio and need to have a common, synchronised view on the data. The
request would be: “We need data-service for three clients for ‘1 hour’ ‘now’
or ‘tomorrow starting at any between 14:00 and 17:00’. At the same time
we need 700 Mbit/s reserved bandwidth between the data-service and
each of the three locations”.
Note: A more advanced request might also include the personal calendars
of the scientists and reservation systems for the high-end visualisation
facilities to negotiate the earliest possible timeslot, where all the
requirements can be met.

Actors Grid User, Grid Site admin., VO admin.
Detection Two or more users log in the Grid application (KoDaVis) and request

connection to the same data sets in the selected KoDaVis server.
Assumptions A VO exists (where the KoDaVis server is located).
Preconditions All user belong to the VO.
Steps Step 1. Users run KoDaVis client locally.

Step 2. Users use KoDaVis client to get access to Grid resources and
schedule independent data visualisation session to the same KoDaVis
server.
Step 3. VO administrator or middleware provides users with the resource
allocation, respectively.
Step 4. Users get resources instantiated/configured and start independent
visualisation sessions to the same data sets in the server.
Step 5. Users finish visualisation sessions and release Grid resources.

Variations Step 3. If resources are not immediately available for one or more users:
VO administrator or middleware provides all users with an alternative
schedule or resource availability.

Post-conditions Users are able to repeat the remote visualisation of data sets with KoDaVis
clients using the same workflow described above.

Extends/Includes N/A
Non-Functional N/A
Issues N/A

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

14

3 Smart Autonomous Network Services

3.1 System-wide Functional View

There are several examples of network services that demand new methods of collaborating and coordinating
with other services to create a more complex network service. For example, a current Network Storage Service
(NSS) could establish collaborations with other Network Storage Services in order to provide a more complex
distributed NSS with added value (for example mirroring, streaming, redundancy, data replication or improving
access performance). Another example is the possible collaboration between different database instances in
order to provide a distributed network database service with added value (for example redundancy,
performance and scalability).

All these composable network services could be improved and controlled by means of an autonomous
manager [AUTCOV] that collects data from the Sensor Framework (SF) deployed at the individual servers, and
acts as a controller to provide self-optimising, self-healing, self-protecting and self-configuring capabilities to the
services provided. This manager could be programmed according to high-level business goals. It would then be
in charge of orchestrating and coordinating these underlying network services according to these business
objectives [AUTC].

For example, a NSS could be overloaded at a given time. This situation could be monitored by an autonomous
manager. In response, the autonomous manager could deploy a read-only mirror of this storage service in a
different machine. This deployment could be used, for example, to perform a load balancing of the different
requests to reduce the overload of the original service. In this case, the autonomous manager would provide
self-optimising capabilities to the storage service.

There are two clear elements that should be considered in this use case:

• An architecture should be available in which the administrator can show the description of the managed
NSS, in order to describe the policies that satisfy the business objectives. This architecture would
demand that all the NSS elements provide a description of the current capabilities, status and action.

• The autonomous manager should be inserted on the architecture in order to execute the previous
policies orchestrating the rest of the NSS involved in the architecture. As a result, self-optimising
capabilities will be provided on the network services by means of executing actions on the managed
network services. This architecture is shown in Figure 3.1. Therefore, an enforcing module should be
inserted on the autonomous manager in order to enable the execution of action from the inferred
information [AUTCAR].

Smart Autonomous Network Services

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

15

Network Service

SF

Autonomous
Manager

SF

Network Service

SF

Network Service

SF

Bussines
Policies

Descriptions

Resource
Status
Actions

Descriptions

Resource
Status
Actions

Descriptions

Resource
Status
Actions

Figure 3.1: Components of a NSS autonomous system

Note that each NSS is providing storage by means of a distributed file system. This kind of dynamic file-system
has several advantages by means of the composition of services (such as mirroring, streaming, stripping, parity
check, redundancy, fault tolerance, etc). To provide these kinds of services the regular interaction
request/response between the third party actor and the NSS should be improved in order to perform
autonomous actions to ensure features like healing, optimising or protecting. Moreover, these distributed
systems are continuously changing the number of managed volumes, the size of these volumes and the
performance provided by each of them. This factor could be improved by means of the collaboration with other
NSS elements.

3.1.1 Context Diagram

Figure 3.2 shows the context and components involved in this use-case:

Smart Autonomous Network Services

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

16

Network
Storage Service

Network
Storage Service

Autonomic
Manager

Administrator

End User Third Party
Volume Volume Volume Volume Volume Volume

Figure 3.2:Context Diagram for the AC use case

3.2 Actors of the System

3.3 Functional View: Use Cases

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Autonomic
Management

Define Policy Administrator This use case produces
the insertion of the
policies that will provide
the autonomous
behaviour in the system.

Actor Description
Administrator In general, this actor is in charge of all the management of the

system. In this context, this actor will be in charge of defining the
policies which will constitute the autonomic behaviour of the system
to achieve self-healing properties.

End-User This actor will use the NSS. This actor is the real user of the service,
and could be an external application/user, represented by means of
the End-User actor. Examples of this actor could be a final end-user
or an external application/service such as GÉANT cNIS and GÉANT
PerfSONAR.

Smart Autonomous Network Services

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

17

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Start Autonomic
Manager

Administrator This use case starts the
autonomous manager in
order to ensure the
application of the
policies defined by the
administrator.

Manage Volumes End-User This use case
represents the
management services of
the volumes
administrated in the
storage services.

Network Storage
Service (NSS)
Management

Manage Security End-User This use case
represents the security
management related to
the access to the NSS.

Figure 3.3 shows the global functional view (including all use cases).

Figure 3.3:Autonomous services use case diagram

3.4 Dynamic View

3.4.1 Define Policies

Use Case GB04 Define Policies
Description This use case describes the process by which the administrator defines the

policies that will provide autonomous behaviour to the NSS.
Actors Administrator

Smart Autonomous Network Services

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

18

Use Case GB04 Define Policies
Detection When the software for editing policies is opened
Assumptions It is assumed that the Administrator has been correctly authenticated and

authorised in the system
Preconditions N/A
Steps 1. Policy Editor retrieves the description of the managed resources and

actions related to all the controlled network storages services and shows
this information to the administrator.
2. Administrator defines/modifies/manages policies in order to determine
behaviour that will be taken into account when the policy antecedent is
fulfilled. The intention of these policies is to achieve any of the features
related to self-optimising, self-healing, self-protecting, self-configuring.
3. Administrator saves all the policies.

Variations o In case resources description could not be retrieved: an error message
will be shown in the screen.

Post-conditions All the policies should be saved correctly.
Extends/Includes N/A
Non-Functional Policy language should be designed in order to enable the expression of

(at least) the behaviour related to the NSS.
Security, Privacy, Trust and AAA should be controlled.

Issues TBC

3.4.2 Start Autonomous Manager

Use Case GB05 Start Autonomous Manager
Description This use case represents the starting of the autonomous manager that will

control the autonomic behaviour of the NSS.
Actors Administrator
Detection When the Administrator starts the Autonomous Manager Service
Assumptions It is assumed that the administrator has been authenticated and authorised

correctly in the system.
Preconditions Policy has been previously defined by the administrator
Steps 1. Autonomous Manager loads the policies defined previously.

2. Autonomous Manager retrieves the current state of the NSS.
3. Autonomous Manager executed the policies against the status retrieved
and obtains a scheduling plan.
4. Autonomous Manager invokes all the actions in the NSS provided in the
scheduling plan.
5. Go to step #2.

Variations o Status of the NSS could not be retrieved: A notification is sent to the
Administrator.

o An action could not be invoked: A notification is sent to the
Administrator.

Post-conditions NSS is being monitored and controlled by the autonomous manager in

order to get any self-healing etc. feature.
Extends/Includes N/A
Non-Functional Security, Privacy, Trust and AAA should be controlled
Issues N/A

Smart Autonomous Network Services

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

19

3.4.3 Manage Volumes

Use Case GB06 Manage volumes
Description This use case represents the process for which an end user manages the

NSS.
Actors End-User
Detection When an end user actor is trying to access to the NSS.
Assumptions NSS is running.
Preconditions N/A
Steps 1. End-User establishes a trust relationship with the NSS (security

considerations).
2. End-User performs an API call requesting:
creation/deletion/mount/unmount/… of volumes.
3. NSS performs the requested action.

Variations o NSS could not perform the action: A notification is shown to the user.
Post-conditions Autonomous Manager will provide autonomic behaviour to this service

enabling an added value. For example, mirroring, striping, streaming, parity
check, redundancy, replication, fault tolerance...

Extends/Includes N/A
Non-Functional Security, Privacy, Trust, AAA might be considered
Issues Other previous GEANT services (such as cNIS or perfSONAR) could use

this service in order to perform the monitoring of the current state of the
NSS service.

3.4.4 Manage Security

Use Case GB07 Manage security
Description This use case represents the process for which an end user manages the

security issues in the NSS.
Actors End-User
Detection When an end user actor is trying to control security access to the NSS
Assumptions NSS is running
Preconditions N/A
Steps 1. End-User establishes a trust relationship with the NSS (security

considerations).
2. End-User defines security considerations.
3. NSS applies the security defined by the actor.

Variations o NSS could not perform the action. A notification is shown to the user.
Post-conditions NSS has security control in the access to the service
Extends/Includes N/A
Non-Functional N/A
Issues TBC

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

20

4 Digital Repositories

4.1 System-wide Functional View

The expansion of the Internet and ubiquitous access to the web for millions of users has resulted in a variety of
new online activities. User-generated content sites include blogs and web forums, social bookmarking sites,
photo and video sharing communities, as well as social networking platforms [SOCSRCH].

The exceptional amounts of information in these collaborative sites have resulted in the construction of large
repositories of knowledge. This requires new approaches to information access [DRIVER, DSPACE] that are
significantly more powerful than the conventional keyword-based methods.

In this use case, a shared digital repository stores and manages a large collection of dynamic web content. In
this way, web content can be organised and managed. Data can be collected, disseminated, distributed,
catalogued, indexed and controlled with repository methods more efficiently than the traditional methods. One
of the essential elements in the deployment of a digital collection involves implementing a technical
infrastructure [SDR] that will ensure that its content is incorporated into all search engines. Optimised data
storage methods can be applied to offer better search results and attract more users.

The basic technique involves making the contents of the collection data and metadata available to the indexing
process and ensuring an easy path into the resources as users click through the results found on the search
engine. This makes the management and searching of different web content in the digital repository more
efficient.

The architecture comprises the following services:

• Retrieval Service: Through this service a user can query or retrieve data from the digital repositories.
• Submission Service: Through this service the content submitters can submit their data.
• Persistence Service: This service is responsible for the interaction with the various databases and

retrieving/and or storing data.
• Composition Service: This service is responsible for the communication between the different

components of the digital repository.
• Management Service: Through this service the manager/administrator can manage the digital

repository.

Digital Repositories

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

21

4.1.1 Context Diagram

Figure 4.1 shows the context and components involved in this use-case:

Figure 4.1: Context Diagram for the digital repository use case

Digital Repositories

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

22

4.2 Actors of the System

4.3 Functional View: Use Cases

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Content
Submission

Content Conversion and
Submission

Content Submitter,
Submission Interface,
Administrator

Information
Query/Retrieval

Clients requests and
retrieves for specific
information

End User,
User Interface Administrator

Repository
management

Repository management Administrator, Management
Interface Administrator

Figure 4.2 illustrates the global functional view (including all use cases).

Actor Description
End User The end-user is looking for information through a web interface.

Once the requested web object is located, the composition service
returns the most relevant objects from the databases, which can be
displayed in a readable or downloadable format.

Content Submitter Content Submitter is responsible for the accurate submission
method with specific design patterns. In most cases the content
submitter can also be the content producer. The submitted content
must be in web-native format that can be viewed immediately
(directly in a web browser or with a plug in).

Repository Administrator The Repository Administrator is in charge of managing the whole
repository infrastructure. Through a single point of view
(Administrative Interface) the Administrator has an overview of all
internal procedures in the Composition Service.

Digital Repositories

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

23

Figure 4.2: Digital repository use case diagram

4.4 Dynamic View

4.4.1 Content Conversion and Submission

Use Case GB08 Content conversion and submission
Description The content submitters define specific patterns for all the data to be

submitted
Actors Content Submitter, Repository Administrator, Content Provider
Detection Content becomes available for submission
Assumptions The content can be described by the specific patterns
Preconditions Specific patterns for the description of the content and the metadata must

be well defined and available
Steps Step 1: Content has been transferred from the provider to the submitter, if

it is different entity
Step 2: Content Submitter converts the specific item of content into a
ready-to-submit format with the specific patterns.
Step 3: Content Submitter authenticates themselves to the repository
through a specific AA server.
Step 4: Content Submitter stores the content into the repository.

Variations None
Post-conditions The repository will be ready to distribute the content and provide the

requested data.
Extends/Includes None
Non-Functional Content conversion to a non-crawlable format.
Issues None

Digital Repositories

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

24

4.4.2 Information Retrieval

Use Case GB09 Information Retrieval
Description Clients request information through a web interface. Content must have

been submitted to the repository in order to be searchable.
Actors End Users, UI
Detection Client decision to access the data repository
Assumptions Data offered by the Content Producer
Preconditions Steps 1 to 4 in Use Case GB08 have been accomplished
Steps Step 1: Client accesses the web interface and requests specific data.

Step 2: Repository returns the most accurate data, after advanced
searching.

Variations None
Post-conditions Client retrieves the most accurate data
Extends/Includes None
Non-Functional None
Issues None

4.4.3 Repository Management

Use Case GB10 Repository Management
Description The Administrator creates, edits, deletes, monitors and analyses data and

repository procedures
Actors Administrator, Management Interface
Detection On event notification
Assumptions None
Preconditions None
Steps Step 1: Administrator receives the event notification,

Step 2: Administrator accesses the Management Interface,
Step 3: Administrator configures the repository accordingly,

Variations None
Post-conditions Repository operating functionally
Extends/Includes None
Non-Functional Any repository procedure that does not work
Issues None

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

25

5 Artistic Performances

5.1 System-wide Functional View

The use of Internet technologies to augment artistic works has grown greatly in recent years, as higher
bandwidth and more powerful collaboration paradigms became available [AHNET]. In particular, delivery of the
content of artistic performances (either live or recorded) and on-line artistic collaboration are becoming more
feasible as the highly stringent constraints that these application domains impose on the supporting
communication layers can be satisfied.

The nature of artistic performances usually implies high levels of transmission quality in order to guarantee an
accurate experience to the audience (and the performers themselves), but also comprehensive security and
access control procedures to preserve intellectual property rights (IPR) [OPOB].

Current practice for these events requires ad-hoc deployments and specific supervision by networking
specialists, not only to establish the initial set up but also to actively incorporate participants into it, and to
monitor the performance of the network services being used.

This use case considers an institution willing to distribute an artistic performance (subject to IPR) to a variable
number of sites by means of a multicast group and an encrypted data stream, possibly negotiating in advance
parameters for quality of service. Participating sites get the appropriate keys to access the data stream by
asserting their rights through a federated digital identity infrastructure. The institution wants to monitor the
usage and performance of the distribution process at several points in the network.

The institution system administrator uses the GEMBus infrastructure to allocate the multicast group, establish a
path to its root from a content producer, define the authorisation requirements to access to the data stream,
and deploy the appropriate measurement points and connect them to the institution collection interface. Any
client willing to participate will use the GEMBus infrastructure to establish its rights to access the data, connect
to an appropriate router in the multicast tree, and download the key(s) to decrypt the content.

5.1.1 Context Diagram

Figure 5.1 shows the context and components involved in this use-case:

Artistic Performances

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

26

Figure 5.1: Context Diagram for the artistic performance use case

Artistic Performances

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

27

5.2 Actors of the System

Actor Description
Institutional Administrator The person(s) in charge of configuring, starting and monitoring the

performance using the GÉANT infrastructure through the GEMBus
services.

GEMBus Deployment Tool(s) A set of tools able to collect user requirements and interface with
the GEMBus core services, locating the appropriate service
endpoints, deploying the appropriate components, and orchestrating
their interactions. A typical implementation for such a tool would
include a web-based interface adapted to the particular application
context.

IPR Manager Accepts a definition of access rights to a certain set of resources
and translates them into authorisation policy statements, able to be
used by the GEMBus security services, based on eduGAIN
components.

Content Producer A system producing the data stream that transmits the performance
information (typically, audio and video) to the remote audience
and/or participants.

Monitoring Client An element able to collect network usage and performance data
from a set of selected points in the network being used to transmit
the data stream, based on PerfSONAR services.

Authorisation Server A component making access-control decisions on the requests to
read protected information issued by clients. These decisions are
made according to defined policies and requestor attributes,
established from its identity within the eduGAIN infrastructure.

Key Server A system able to store and distribute (upon an authorised request)
the keys required to produce and, respectively, to decode an
encrypted data stream.

Multicast Server A system that receives the data stream for the transmitted
performance, encrypts it according to the keys collected from the
key server, and transmits it through the multicast group that it has
previously allocated.

Multicast Group A set of network resources that transmits the encrypted data stream
and makes it available to its potential receivers according to the
multicast interaction paradigm.

Measurement Point An element co-located to a (group of) network resource(s), able to
collect and provide access to data related to the resource behaviour
and usage.

Stream Client The intended receiver of the data stream for the performance, able
to reconstruct it, show it to the remote audience and/or participant
and, if appropriate, send feedback to the content producer and other
clients.

Artistic Performances

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

28

5.3 Functional View: Use Cases

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Location of service
endpoints

Institutional administrator,
GEMBus deployment tool

It makes an implicit
use of the GEMBus
core services

Resource location and
deployment

Service deployment GEMBus deployment tool,
multicast server, key server

Access control
management

Access control
management

Institutional administrator,
IPR manager,
key server

Languages and
methodologies for
access policy
definition are out of
scope

Stream distribution Stream distribution Content producer, multicast
server

Access control Stream client,
key server

 Stream access

Stream access Stream client, multicast
group

Stream monitoring Monitoring Monitoring client,
measurement point

Figure 5.2 presents the global functional view (including all use cases).

Artistic Performances

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

29

Figure 5.2: Artistic performance use case diagram

5.4 Dynamic View

5.4.1 Infrastructure Deployment

Use Case GB11 Deployment of the service infrastructure
Description The administrators at the institution define the characteristics of the event,

allocate the necessary resources and deploy the required infrastructure.
Actors Institutional administrators, GEMBus Deployment Tool(s), IPR Manager,

Key Server, Monitoring Client.

Artistic Performances

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

30

Use Case GB11 Deployment of the service infrastructure
Detection Event definition becomes available.
Assumptions Characteristics of the event, including access policies, are clearly defined.

GEMBus core services up and running.
Monitoring support infrastructure (PerfSONAR) available.
Access control infrastructure (eduGAIN) available.

Preconditions Measurement points can only be deployed at those parts of the network
supporting PerfSONAR, but this shall not be considered a condition
precluding the deployment of the infrastructure at those points.

Steps Step 1: The administrators at the institution define the characteristics of the
event at the GEMBus Deployment Tool.
Step 2: The GEMBus Deployment Tool locates a set of appropriate service
access points for:

• Accepting the data stream (the Multicast Server).
• Distributing keys and applying access control services (the Key

Server).
• Establishing the PerfSONAR infrastructure required for monitoring.

These endpoints are made available to the Content Producer, the IPR
Manager, and the Monitoring Client.
Step 3: The Deployment Tool contacts the GEMBus orchestration services
to interconnect the service access points and make them exchange the
necessary information, using a unique ID for the event.
Step 4: The above mentioned unique ID is used to build appropriate
service endpoints for the clients to access the stream and, optionally, to
announce its availability.
Step 5: The administrators at the institution define the access policy for the
event, and use the IPR Manager to translate it into a federated
authorisation policy and transfer it to the Key Server.
Step 6: Data about the allocated support infrastructure is made available to
the Monitoring Client, which will make the appropriate connections to the
PerfSONAR services.

Variations Step 1: If the access policy is open, then no contact with any Key Server
shall be established.
Step 5: If the access policy is open, this step shall be omitted.

Post-conditions The infrastructure will be ready to distribute the data stream and provide
monitoring data.

Extends/Includes None
Non-Functional Licensing agreements influencing access control policies.
Issues The way of requesting data for multicast flows from PerfSONAR should be

clarified.

5.4.2 Access to the Data Stream

Use Case GB12 Stream Clients access the data stream
Description Clients use the unique ID produced in Use Case GB11 to access the data

stream, after establishing their rights for it.
Actors Stream Clients, Key Server, Multicast Group.
Detection Stream client decision to access the data stream
Assumptions Data stream is being offered by the Content Producer.

Multicast Group is accessible to the Stream Client.
Preconditions Steps 1 to 6 in Use Case GB11 have been accomplished

Artistic Performances

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

31

Use Case GB12 Stream Clients access the data stream
Steps Step 1: Stream Client contacts its eduGAIN endpoint to establish its

identity (or the identity of the user it is going to act on behalf of) and gets a
credential for the Key Server.
Step 2: Stream Client contacts the Key Server, which validates client rights
according to the configured authorisation policy.
Step 3: Upon positive authorisation, the Key Server provides the Stream
Client with the appropriate cryptographic material to decode the data
stream
Step 4: Stream Client contacts the Multicast Group and proceeds to play
the content locally.

Variations Step 1 to 3: Shall be omitted if the access policy is open.
Step 2: The Key Server may require to be contacted prior to Stream Client
identity exchange, implying the use of an Identity Provider discovery
process.
Step 3: If the Stream Client attributes does not satisfy the authorisation
requirements, no key will be provided, and an error will be returned
instead.

Post-conditions Stream Client playing (or in disposition to play) the event content.
Extends/Includes None
Non-Functional None
Issues Does it make sense to extend monitoring up to client interfaces, therefore

making E2E data available?

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

32

6 Collaboration Platforms

6.1 System-wide Functional View

Work practices are evolving from traditional local groups towards a new paradigm of virtual groups, where
experts (eProfessionals) have to work together regardless of their geographical location. In this context, these
experts use Collaborative Work Environments that enable them to share information and exchange different
point of views to reach a common understanding. These Collaborative Working Environments involve several
actors:

• Organisations: A Collaborative Work Environment may be established inside an organisation
(workgroups) or between different organisations.

• Experts (eProfessionals).
• Underlying technologies, from the simplest ones (like e-mail) to the most advanced and complex

Information Systems and Communication Technologies.

Information and Communication Technologies (ICTs) are the main support for these new work practices. ICTs
have evolved dramatically over the years, both in architecture as well as in functionality. From the first platforms
built over a centralising scheme dominated by the concept of a unique provider, to now where the architecture
has moved to that of a “cloud” where, although client-server roles still exist, any element in the platform can be
provider and consumer at the same time, and any participant in the “cloud” can provide or consume.

Providers have also changed their way of participating. Against a centralised scheme where information is
provided through a well-known and well-located service, now information is no longer the only value of the
provider [SWS]. In spite of this, clients also look for services (functionality) on providers. And those services are
now distributed so that they no longer need to be in the same provider; they can be found over the network and
composition of subsets of services will be used to offer clients a final set of complex business processes
[ACSWS].

A basic principle to achieve this organisation is the independence between processes in a way that the service
in charge of a single process could be as simple or complex as the activity it is carrying out. In addition, a
service can use another service with the only requirement that each service must know the existence of the
others, so a mechanism to describe them is needed. This description must have at least the name of the
service and the data that is expected to be received and to be returned [MDSWS].

Collaboration Platforms

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

33

Collaboration platforms deal with a heterogeneous portfolio of tools provided by the different partners, with one
point in common; they are oriented towards the eProfessional collaborative activities, in their many forms. As a
first attempt to classify them, we note that two types of applications exist:

• Those used in a synchronous way, where tight time constraints exist between the actions occurring.
• Those which are asynchronous, with highly independent interactions (in time).

Due to the fact that this division is also patent in the way that they are actually used, it makes sense that any
analysis deals with them separately.

On the other hand, the objective is to construct a more productive environment where the (originally) separated
tools can coexist, presenting the eProfessional the possibility to use all of them without even noticing the inner
interactions taking place. Therefore, mechanisms to allow the applications to communicate, offer their services
and take advantage of the services offered by the others must be ensured.

In the frame of collaborative platforms, Web Services are a fundamental technology over which all the business
logic is developed from the bottom, up to the user interface. Those services implement basic functionalities,
making them eligible by the business processes that will build much more complex business logics
orchestrating them. This conception consolidates the idea of a CoCoS2, as a combination of services offered
by one or more applications to achieve a more complex task, concealing most of the complexity that would
otherwise appear if they had to be orchestrated manually. Therefore, the ability of orchestrating services to
achieve much more complex goals is a key factor in collaborative platforms, but composing services through
business processes presents an important problem; the lack of adaptability to any situation.

For example, consider a business process of uploading a document and notifying users. It is represented on
the system through an abstract description that will be processed by the Semantic System to execute it using
semantic information. It is divided into two different stages:

• Uploading a document: To accomplish this, the Semantic System takes into account the user’s profile
and characteristics of the document to select the appropriate shared workspace.

• Notifying users: The Semantic System takes into account the user’s profile, its context rules that define
the preferred media for notification, and context information in order to select the right notification
service.

For example, if a notification message includes some kind of attachment, and according to the context
information, the user’s profile and the user’s context rules a mail service must be used, the Semantic System
will choose the most suitable to accomplish the task giving all this information, including the characteristics of
the attachment. Figure 6.1 illustrates this situation:

2 Collaborative Composition of Services: describe an orchestration of services to achieve a more complex goal/functionality than the
original offered by the services involved.

Collaboration Platforms

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

34

Figure 6.1: General semantic system architecture

The main components are:

• Discovery Repository: Responsible for maintaining the publishing of services available for the dynamic
orchestration.

• Composition Engine: Responsible for translating abstract business processes into executable ones and
executing them. To accomplish this it will use the information provided by the Search Engine.

• Search Engine: An abstract business process. The services involved are referenced as semantic
annotations that represent the functionality needed in each step of the orchestration process, thus,
decoupling the underlying services from the business process and making able the dynamic
composition. The Search Engine is responsible of locating the most suitable services that fulfil a
particular goal using semantic information.

6.1.1 Context Diagram

Figure 6.2 shows the context and components involved in this use-case:

Collaboration Platforms

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

35

Figure 6.2:: Context Diagram for the collaboration platform use case

Referring to Figure 6.2, if we have the following services:

• Service1-SendMailToMailingList_With_Small_AttachmentLimit:
○ Sender needs to be:

— Either a subscriber of the Mailing List.
— Or a member of the group of the Mailing List owner.

○ Attachment size < 100KB.
• Service2-SendMailToMailingList_With_Large_AttachmentLimit:

○ Sender needs to be:
— Either a subscriber of the Mailing List owner.
— Or a member of the group of the Mailing List owner.

○ Attachment size < 1000KB.

For example:

If Bob wants to send a message to Spaces2 with attachment = 90 Service1 and Service2 could be selected,
because sender is subscriber to Spaces2 mailing list and message has small attachment.

Bob wants to send a message to Spaces2 with attachment = 200 Service2 could be selected. Because
sender is subscriber to Spaces2 mailing list but message has large attachment.

John wants to send a message to Spaces2 with attachment = 900 Service2 could be selected. Sender is not
a subscriber of Spaces2 mailing list, but is member of Spaces mailing list as well as Spaces2 owner and the
message has large attachment.

Alice wants to send a message to Spaces with Attachment = 50 None. Because sender is not a subscriber
of Spaces mailing list and is not a member of the same group as Spaces owner.

Collaboration Platforms

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

36

The scenario shown as example presents the key use case in eCollaboration environments where the services
are orchestrated to achieve the final functionality to the user, supporting the exchange of both information and
services between different partners.

6.2 Actors of the System

Since this is a generic use case that takes place on a composite collaboration environment involving the
communication between services, actors are not precise but are generalisations.

6.3 Functional View: Use Cases

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

eCollaboration Composition of services Communication
Middleware, Applications,
Web Services

Semantic
eCollaboration

Semantic composition of
services

Augmented Middleware,
Applications, Web Services

Figure 6.3 presents the global functional view (including all use cases).

Figure 6.3: Collaboration platform use case diagram

Actor Description
Applications Applications available on the collaboration platform, will

communicate with other services to offer functionality to the user.
Web Services Will offer basic or complex functionalities to other members of the

collaboration platform.
Business Processes Will offer functionality based on the orchestration of Web Services,

other Business Processes or both.
Communication Middleware Part of the platform on the services side, responsible for

communication between members of the collaboration platform.
Augmented Middleware Responsible for the dynamic composition of services using semantic

information. It extends the capabilities of the Communication
Middleware.

Collaboration Platforms

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

37

6.4 Dynamic View

6.4.1 Composition of Services

Use Case GB13 Composition of Services
Description This is the fundamental Use Case that takes place on a collaboration

environment involving communication between services.
Actors Communication Middleware, Applications, Web Services.
Detection N/A
Assumptions A general collaborative platform, services and CoCoS offer functionality

through the public interface.
Preconditions All the actors involved must be available at the time the collaboration is

performed.
Steps This flow is defined over a regular business process where collaboration

between different services takes place:
From the user interface or another service/CoCoS, an action is triggered
that uses one or more services/CoCoS.
Those services/CoCoS are executed, which may involve different
services/CoCoS as well.
Results are returned to origin.

Variations Does not apply.
Post-conditions Communication between services done and collaborative goal achieved.
Extends/Includes No links to other Use Cases in this sense.
Non-Functional As this is a generalisation of concrete collaboration Use Cases, there are

no non-functional circumstances that impact it.
Issues N/A

6.4.2 Semantic Composition of Services

Use Case GB14 Semantic Composition of Services
Description This is an extension of the fundamental Use Case that takes place on a

collaboration environment involving communication between services.
Actors Augmented Middleware, Applications, Web Services.
Detection N/A
Assumptions A general collaborative platform, augmented middleware, semantic

information available, services and CoCoS offer functionality through the
public interface.

Preconditions All the actors involved must be available at the time the collaboration if
performed.

Steps In the case the interaction between services involve an abstract business
process, the overall steps of interaction are as follows:
The service/CoCoS that wants to interact with an abstract business
process calls the Composition Engine (which is one of the main
components of the Semantic System and at the same time is available as a
service integrated in the collaboration reference architecture) to execute an
abstract process, providing information about the process, for the process
and context information.
The Composition Engine analyses the abstract process and queries the
Search Engine to obtain the most suitable services to be used in the
execution of the process.

Collaboration Platforms

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

38

Use Case GB14 Semantic Composition of Services
The Search Engine looks for services on the Discovery Repository.
The Discovery Repository returns the services available to the Search
Engine.
The Search Engine obtains and analyses the services from the Web
Services Repository. Then, it uses semantic information to select the most
suitable and provides them to the Composition Engine.
For every service needed, the Composition Engine retrieves its information
from the Web Services Repository while translating the abstract business
process into an executable one.

Variations N/A
Post-conditions Communication between services done and collaborative goal achieved.
Extends/Includes Extends Use Case GB13, Composition of Services.
Non-Functional As this is a generalisation of concrete semantic collaboration Use Cases,

there are no non-functional circumstances that impact it.
Issues N/A

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

39

7 Direct Access to PerfSONAR

7.1 System-wide Functional View

PerfSONAR is an infrastructure for network performance monitoring, making it easier to solve end-to-end
performance problems on paths crossing several networks. It contains a set of services delivering performance
measurements in a federated environment. These services act as an intermediate layer between the
performance measurement tools and the diagnostic or visualisation applications. This layer is aimed at making
and exchanging performance measurements between networks, using well-defined protocols.

PerfSONAR is a services-oriented architecture. This means that the set of elementary functions have been
isolated and can be provided by different entities, called services. All those services communicate with each
other using well-defined protocols.

This software offers a powerful environment for network performance monitoring but it still requires a complex
setup. The main goal is to offer a very simple interface for obtaining multi-domain network performance results.

7.1.1 Context Diagram

Figure 7.1 shows the context and components involved in this use case:

Direct Access to PerfSONAR

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

40

Figure 7.1: Context Diagram for the direct access to PerfSONAR use case

7.2 Actors of the System

Since this is a generic use case that takes place on a composite collaboration environment involving the
communication between services, actors are not precise but are generalisations.

Actor Description
User Is the person who wants to monitor the performance of a link

between two endpoints using the GEANT infrastructure through the
GEMBus services.

Monitoring Module An element able to collect network usage and performance data
interacting with perfSONAR services and cNIS.

Lookup Service The perfSONAR Lookup service (LS) keeps track of which
perfSONAR web services are available. The web services can
register with the LS at regular intervals to signal that they are
running, so that other clients (usually visualisation tools) can then
request this information from the LS to find out which services are
available.

Measurement Point The perfSONAR Measurement Point has the capability of creating
and publishing monitoring information based upon active and
passive measurements.

Measurement Archive The perfSONAR Measurement Archive retrieves circuit/lightpath
status and interface information: link utilisation, link capacity, input
errors, output drops…

Authentication Service The perfSONAR Authentication Service (AS) provides
authentication and authorisation to protect perfSONAR web services
from unrestricted access.

cNIS A service able to provide data about the network topology of
participating domains.

Direct Access to PerfSONAR

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

41

7.3 Functional View: Use Cases

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Monitoring initialisation User,
Monitoring module

It makes an implicit
use of the GEMBus
core services

Monitoring process Monitoring module

Network monitoring

Monitoring ending Monitoring module

Figure 7.2 presents the global functional view (including all use cases):

Figure 7.2: Direct access to PerfSONAR use case diagram

7.4 Dynamic View

7.4.1 Monitoring Initialisation

Use Case GB15 Monitoring initialisation
Description A user requests information about the performance between two

endpoints.
Actors User, Monitoring module, cNIS, perfSONAR Lookup Service.
Detection User’s request
Assumptions Monitoring support infrastructure (PerfSONAR) available.

Access control infrastructure (eduGAIN) available.
cNIS available.

Preconditions Measurement points can only be deployed at those parts of the network

Direct Access to PerfSONAR

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

42

Use Case GB15 Monitoring initialisation
supporting PerfSONAR, but this shall not be considered a condition
precluding the deployment of the infrastructure at those points.

Steps Step 1: User requests performance monitoring between two endpoints: X1
and X2.
Step 2: The Monitoring module requests the list of nodes between X1 and
X2 from cNIS service.
Step 3: The Monitoring module requests the list of Measurement Points
and Measurement Archives services available for the obtained list of nodes
from the perfSONAR Lookup Service.

Variations Step 1: If X1 or X2 are not valid endpoints, an error is returned.
Post-conditions The results contain the list of perfSONAR service elements that may be

accessed by the Monitoring module.
Extends/Includes None
Non-Functional None
Issues None

7.4.2 Monitoring Process

Use Case GB16 Monitoring process
Description Monitoring module uses the list of perfSONAR services produced in Use

Case GB15 to get the performance monitoring.
Actors Monitoring module, perfSONAR Measurement Point, perfSONAR

Measurement Archive.
Detection Monitoring module decision to access the performance data.
Assumptions Performance data is offered by perfSONAR MPs and MAs.
Preconditions Steps 1 to 6 in Use Case GB15 have been accomplished.
Steps Step 1: Monitoring module contacts the user’s eduGAIN endpoint to

establish their identity.
Step 2: Monitoring module contacts perfSONAR Authentication service in
order to know which MPs and MAs the user is allowed to get information
from.
Step 3: Monitoring module starts the monitoring of the performance in
allowed MPs.
Step 4: Monitoring module gets performance data from allowed MAs.

Variations None
Post-conditions Performance data collected.
Extends/Includes None
Non-Functional None
Issues None

7.4.3 Monitoring Ending

Use Case GB17 Monitoring ending
Description Monitoring module uses the list of perfSONAR MP produced in Use Case

GB16 to end the performance monitoring.
Actors Monitoring module, perfSONAR Measurement Point.
Detection Monitoring module decision to end the performance monitoring.
Assumptions Performance monitoring was started by perfSONAR MPs.
Preconditions Steps 1 to 4 in Use Case GB16 have been accomplished

Direct Access to PerfSONAR

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

43

Use Case GB17 Monitoring ending
Steps Step 1: Monitoring module contacts perfSONAR MPs in order to end and

remove the requested monitoring processes and resources.
Variations None
Post-conditions Performance data collected
Extends/Includes None
Non-Functional None
Issues None

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

44

8 AutoBAHN/PerfSONAR Integration

8.1 System-wide Functional View

AutoBAHN has been designed to allocate network bandwidth to users/applications, both immediately and in
advance. Networking resources in the form of dynamic circuits are allocated, end-to-end, across multiple
domains, creating a complex problem of co-ordination and dynamic re-configuration of resources within a
number of administrative domains. The granularity of resource reservations in terms of bandwidth and duration
is important, together with the required Quality of Service (QoS) parameters.

The AutoBAHN system is based on the Inter-Domain Manager (IDM), a module responsible for inter-domain
operations of circuit reservation on behalf of a domain. This includes inter-domain communication, resource
negotiations with adjacent domains, request handling, and topology advertisements.

PerfSONAR is an infrastructure for network performance monitoring, making it easier to solve end-to-end
performance problems on paths crossing several networks. It contains a set of services delivering performance
measurements in a federated environment. These services act as an intermediate layer, between the
performance measurement tools and the diagnostic or visualisation applications. This layer is aimed at making
and exchanging performance measurements between networks, using well-defined protocols.

PerfSONAR is a services-oriented architecture. This means that the set of elementary functions have been
isolated and can be provided by different entities, called services. All these services communicate with each
other using well-defined protocols.

The integrated AutoBAHN and PerfSONAR use case will usually occur when someone (the client or another
service) wants to dynamically reserve a path with specified parameters (e.g. bandwidth) together with
monitoring some of the nodes in the path.

8.1.1 Context Diagram

Figure 8.1 shows the context and components involved in this use-case:

AutoBAHN/PerfSONAR Integration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

45

Figure 8.1: Context Diagram for the AutoBAHN/PerfSONAR use case

8.2 Actors of the System

Actor Description
GEMBus:Client
(a.k.a. Client)

Client requests some actions from the system. The action can be
path reservation with additional monitoring.

GEMBus:Service
(a.k.a. Service)

This is another type of Client. Usually it’s another service or module
of the GEMBus system that requests some actions from the actors
described below. It is sometimes called automated client, which
means a client without user interaction. The action can be path
reservation with additional monitoring. In the following sections the
Service will be treated the same as Client (i.e. if the “Service” is not
mentioned explicitly, the “Client” is “Client or Service”)

AutoBAHN All services belonging to the AutoBAHN environment. The
AutoBAHN Inter-Domain Manager (IDM) should handle all requests
of the system.

PerfSONAR All services belonging to the PerfSONAR environment. There are
three types of such services: Lookup Service (LS) that provides
information on other PerfSONAR services; Measurement Point (MP)
that can perform monitoring; and Measurement Archive (MA) that
stores and manages the measurement results.

AutoBAHN/PerfSONAR Integration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

46

8.3 Functional View: Use Cases

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Path reservation Client, AutoBAHN On user's request the
Monitoring
reservation should
be also done after
this use case

Monitoring reservation Client, PerfSONAR Will be next action
done automatically
after Path
reservation

Path reservation

Fetching monitoring results Client, PerfSONAR
Path resignation Client, AutoBAHN Monitoring

resignation should be
also done after this
use case

Path resignation

Monitoring resignation Client, PerfSONAR Will be next action
done automatically
after Path resignation

Figure 8.2 presents the global functional view (including all use cases).

AutoBAHN/PerfSONAR Integration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

47

Figure 8.2: AutoBAHN/PerfSONAR integration use case diagram

8.4 Dynamic View

8.4.1 Path Reservation

Use Case GB18 Path reservation with monitoring
Description Clients requests the dynamic path reservation from AutoBAHN and wants

some of the nodes (or all the nodes if possible) on the path to be monitored
by PerfSONAR.
There is also a simpler version without the monitoring, and then the
monitoring may be omitted.
This use case is depicted in Figure 8.3.

Actors Clients, AutoBAHN, PerfSONAR.
Detection Client's request.
Assumptions PerfSONAR and AutoBAHN services up and running.

There is at least one PerfSONAR Lookup Service or Global Lookup
Service and AutoBAHN Inter-Domain Manager known.

Preconditions There is a possibility to reserve the path between two requested nodes;
there are Measurement Points and Measurement Archives available for
monitoring the requested nodes with the requested metrics.

Steps Step 1: Client requests setting the dynamic path reservation X and perform
monitoring all the nodes with parameters Y.

AutoBAHN/PerfSONAR Integration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

48

Use Case GB18 Path reservation with monitoring
X is a set containing:
x1, x2 – end nodes
t – time
p – additional parameters (bandwidth, etc.)
Y is a set containing:
P – list of all nodes on the path (x1, p0, p1, ... pn, x2) with additional
information on which of them should be monitored (it may be done by
setting a flag on each one)
p – additional measurement parameters (required metric(s), etc.)
Step 2: Path reservation module contacts the AutoBAHN module and
passes X.
Step 3: AutoBAHN module contacts AutoBAHN IDMs in order to reserve
path resources and get the information on the path topology. As soon as
the path is reserved the client is responded with the path details (P)
Step 4: Path reservation module tries to schedule measurement and
contacts to PerfSONAR module passing P and Y.
Step 5: PerfSONAR module contacts PerfSONAR Lookup Service and
tries to find all the PerfSONAR Measurement Archives that store
measurement results from the node list to be monitored. In addition
Measurement Points may be contacted to perform the measurement with
specified parameters (Y) on nodes belonging (or close) to the path (P) – if
possible and implemented for specified type of metric/MP.
The complete path with all MPs and MAs is returned – P'.
Step 6: Client is provided with all the details and waits until the path is
closed and monitoring is done.
Step 7: Client contacts the PerfSONAR module in order to get results from
MAs. If available, the Client may contact the specified MA in order to get
partial measurement date before the path is closed.

Variations

Step 1: If not all required parameters -> error
Step 3: if path can't be established -> error
Step 5: if not all specified nodes to be monitored can be monitored ->
warning or error
Step 7: if no monitoring or monitoring fails -> do not fetch the results.

Post-conditions Path established and monitoring done, results in a set of PerfSONAR
Measurement Archives.

Extends/Includes None
Non-Functional None
Issues None

This use case is depicted in Figure 8.3:

AutoBAHN/PerfSONAR Integration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

49

Figure 8.3: Sequence diagram for the reservation with monitoring process

8.4.2 Path Resignation

Use Case GB19 Path resignation with monitoring resignation
Description The previously reserved path needs to be removed

This use case is depicted in Figure 8.4.
Actors Clients, AutoBAHN, PerfSONAR.
Detection Client's request or reservation failed.
Assumptions PerfSONAR and AutoBAHN services up and running.
Preconditions Path is reserved, monitoring is reserved.
Steps Step 1: Client passes the identifier of the reserved path.

Step 2: Path reservation module contacts to AutoBAHN module in order to
remove the path.
Step 4: Path reservation module contacts the PerfSONAR module in order
to remove all scheduled measurements from the PerfSONAR MPs.

AutoBAHN/PerfSONAR Integration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

50

Use Case GB19 Path resignation with monitoring resignation
Variations Don't apply.
Post-conditions Path is removed.
Extends/Includes In some cases, when the reservation went wrong, this use case may

extend the Path reservation use case.
Non-Functional None
Issues None

 This use case is depicted in Figure 8.4:

Figure 8.4: Sequence diagram for the resignation process

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

51

9 Real-time Collaboration

9.1 System-wide Functional View

Real time collaboration service (like H.323 videoconferencing) helps users to meet more efficiently by reducing
the need to travel. However, there is quite a lot of work in organising and technically preparing such meetings
[JANETBS].

It is assumed that almost each conferencing system could nowadays be equipped with its own reservation and
management system, which usually also supports some user management functions. Such a service forms an
island in the administrative domain that limits its usability. Besides the great variety of communication
possibilities (H.323, SIP, jabber, Flash based systems, etc.) we should also take into consideration the many
groups of users willing to collaborate cross the borders of institutions. And institutions or independent service
providers are willing to provide the communication services to a broad range of users.

This use case depicts a modular system that provides a way to prepare and manage meetings for a group of
users. The key word is modularity [COUNIVERSE]. We assume that there is a Group management system that
can be incorporated to provide membership data. Next there are service modules providing a way to establish
the required communication channels, usually from some central services. The central service (i.e. MCU)
brings a larger scale multipoint communication possibility that could not be provided by endpoints.

The modular systems should also overcome the usual borders of existing reservation systems; single service
orientation. Real world experience has shown that one system could be excellent for one set of channels while
completely inadequate for others. For example, audio problems and small definition video can be experienced
in the Adobe Connect flash-based service. These channels are provided in good quality by the H.323/SIP
system, although they lack other collaboration features (like active desktop/application sharing and others).
These two systems together can create interesting and very usable combinations. And there are many more
services that could be used side-by-side or even interconnected. Modular design also allows the incorporation
of new services as they appear, and the removal of unused services.

There are also two other services tightly coupled to conferencing. These are Recording and Streaming
services, which can extend the usage of real-time systems. Even these could be introduced into such a
modular system.

The key assumption for success of such a system is a precise definition of API(s) and service descriptions that
will allow us to manage the services from outside systems.

Real-time Collaboration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

52

9.1.1 Context Diagram

Figure 9.1 shows the context and components involved in this use-case:

Figure 9.1: Context Diagram for the real-time collaboration use case

Real-time Collaboration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

53

9.2 Actors of the System

Actor Description

Administrator The Administrator is a manager of the meeting process
(creating, changing, etc.). It includes user role
management and status monitoring.
The Administrator usually will be a member of the group
willing to meet, but this isn't mandatory. The Administrator
can delegate any right to other users (i.e. Management of
running the MCU meeting room).

Service Repository Definition of available services (and their locations,
interfaces and policies).

Meeting Manager A set of tools able to collect user requirements and
interface with the services, locating the appropriate service
endpoints, deploying the appropriate components, and
orchestrating their interactions.
The Meeting manager provides meeting information
(service identifiers like numbers, URLs, etc.) to support
user interaction (User clients). Meeting manager offers
only those services in the repository for which it has the
right API and where its service policy allows it to be used
by a certain Manager or Group.

Group Management Provides User identities to the system, together with
attributes for authorisation decisions.

Meeting Server A system that distributes meeting channels between user's
clients and other services (Recording, Streaming, etc.).
Under a meeting channel can be included audio, video,
text, application sharing and many more. A meeting server
could be any service that provides meeting channels
exchange, for example H.323/SIP MCU, Adobe Connect
(Flash-based system), IM (Jabber) server and others.
More than one Meeting server for a particular technology
could be attached to the Meeting manager. It’s up to
Meeting manager to choose one according to free time
slots, to migrate between them or even to request
cooperation (clustering/cascading) of them.

Recording Server A system that records meeting channels and provides
offline access to recordings according to access rights.
The recording server is not a mandatory part of the
meeting but it is included to illustrate possible needs of
users in the meeting. Some of the real world meeting
servers could provide recording and streaming service but
for the purpose of this uses cases the servers are
decomposed.

Streaming Server A system that provides online and/or on demand
streaming of meeting according to access rights. The
Streaming server is not a mandatory part of the meeting
but is included to illustrate possible requirements of users
in the meeting.
Another complete use case could be used here as a
service provider, and this use case will be consumer of its
service (i.e. an artistic performance use case for
streaming).

Real-time Collaboration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

54

Actor Description

Other Server Any other Server/Service that could be used for running or
supporting the meeting. A complete use case could be
used here as a provider and this use case will be
consumer of its service.

User Clients Producers and receivers of particular meeting streams i.e.
H.323/SIP clients, Flash-enabled browsers, IM clients....
User clients are also a web browser used to access the
Meeting Manager portal, and a mail client to receive
notifications and calendaring application.

9.3 Functional View: Use Cases

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Meeting
preparation and
deployment

Location of services
according to user group
preferences

Administrator, Meeting
manager, Service
Repository

According to user group
preferences, set of
available services to
meeting manager

 Meeting deployment Meeting manager,
Meeting server,
Recording server,
Streaming server, other
servers,
user clients

Accessing the
Meeting

Accessing the Meeting Meeting manager,
Meeting server,
Streaming server, user
clients

Figure 9.2 presents the global functional view (including all use cases):

Real-time Collaboration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

55

Figure 9.2: Real-time collaboration use case diagram

9.4 Dynamic View

9.4.1 Meeting Deployment

Use Case GB20 Meeting deployment
Description Administrator, according to Service policies, Meeting manager defines

capabilities/features, user preferences, and meeting purpose and allocates
the required channels and extensions. After approval by the group wishing
to meet (the date is set), resources are orchestrated together to build the
meeting and pass back the status and means for accessing the channels.

Actors Administrator, Meeting manager, Meeting server, Recording server,
Streaming server, other servers, user, user clients.

Detection Meeting is available.
Assumptions Meeting manager core service and repository available

Group Management Access control infrastructure available.
Preconditions General availability of services chosen from the repository.
Steps Step 1: The Administrator defines the meeting channels in the Meeting

Manager for the particular user group.

Real-time Collaboration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

56

Use Case GB20 Meeting deployment
Step 2: The group chooses the date and time and confirms the channels. A
defined meeting could be easily reused just by change of date. Or the
meeting could be defined as recurrent.
Step 3: The Meeting manager locates a set of appropriate services:
Meeting server or servers to exchange the streams.
Recording server if needed.
Streaming server if needed.
Manager checks their availability until the set is complete or error state is
entered. Manager notices the Administrator whether the systems are
available or channel allocation has to be modified.
Step 4: The Meeting manager interconnects the set of services as needed
(Meeting, Recording and Streaming server or more Meeting servers). Since
there can be several independent streams in the meeting, it fetches the
access information for each channel.
Step 5: The Manager creates or uploads meeting roles and further
information, like user's label (where required) into Servers, prepares
authorisation attribute mapping between the Group manager and service,
and obtains authorisation codes from service, according to particular
service constraints.
Step 6: Meeting information is provided to the User in the Meeting manager
portal. The User is notified by mail and can upload the event into calendars
or other announcement systems.
Step 7: Users can change a limited set of information in their profiles and
change real endpoints to meeting server rooms.

Variations Step 2: Date and confirmation could be provided directly by the
Administrator

Post-conditions Users will be ready to access the meeting channels using their identities
Extends/Includes None
Non-Functional None
Issues None

9.4.2 Accessing the Meeting

Use Case GB21 User accesses the meeting room
Description User gathers meeting channel access information (logs into the Meeting

manager portal) that will be used by clients to access the channels. User or
portal instructs the clients to access the channels.

Actors Meeting server, Streaming server, user clients, Meeting manager.
Detection User’s decision to access set of channels defined in meeting room.
Assumptions User clients are operational and able to access the meeting room

channels.
Preconditions Steps 1 to 6 in Use case GB20 have been accomplished.
Steps Step 1: User logs into the Meeting manager portal where all the channel

access information is presented.
Step 2: User chooses the channel (repeatedly) and accesses it by (for
example) copying the service identifier into the appropriate client or
accessing the URL via a browser. The precise way depends on service
definition and manager functionality.
Step 3: Client is authorised, if required. For example, service internal
protocols authorisation, PIN or by Authorisation service (Group Manager)
session and attributes could be used, depending on the particular Meeting
Server.

Real-time Collaboration

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

57

Use Case GB21 User accesses the meeting room
Step 4: Power users (delegated by the Administrator) can access out-of-
band meeting channels management portals or will be allowed to manage
meeting channels directly at the resources depending on the resource
functionality

Variations None
Post-conditions Clients are exchanging the streams.
Extends/Includes None
Non-Functional None
Issues None

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

58

10 Scientific Workflows

10.1 System-wide Functional View

Workflow-based research systems will be considered here in the framework of the Common Language
Resources and Technology Infrastructure (CLARIN) project. CLARIN 3 is a large-scale, pan-European
collaborative effort to create, coordinate and make language resources and technology available and readily
usable. CLARIN offers scholars the tools to allow computer-aided language processing, addressing one or
more of the multiple roles language plays (i.e. carrier of cultural content and knowledge, instrument of
communication, component of identity and object of study) in the Humanities and Social Sciences.

CLARIN is devoted to building a persistent integrated and inter-operable infrastructure that will facilitate the
access and the combination of language resources and tools/web services for those researchers that are
working with language material in some form, in particular the humanities and social sciences. Even though
CLARIN focuses on language material for the humanities and social sciences, their goal of providing inter-
operable resources and services that can be dynamically combined and composed is a direct match with the
generic goals of GEMbus; making the CLARIN project an ideal candidate for testing the GEMbus ideas and
(later on) implementations, with GEMbus providing the generic technology and CLARIN using them for their
specific needs.

The division between generic principles provided by GEMbus and the specific use CLARIN will make of them
also shows up in the context diagram and use cases/workflow descriptions further on. While the context
diagram describes a CLARIN specific scenario, the individual use cases and workflow descriptions themselves
are generic in nature (since the technology for these will be provided by GEMbus).

Every CLARIN service (whether new or existing) will be accessible as a web service, which can be Simple
Object Access Protocol (SOAP) or Representational State Transfer (REST) based and should be handled by
CLARIN without distinction.

Since language resources can be large, typically the resource itself is not passed in the web service call, but
rather the metadata (including provenance) is passed between services, including the (storage) location of the
resource to be operated on. Different types of services exist, such as tokenisers, parsers and taggers. Roughly
speaking tokenisers divide language resources into logical units (or tokens), while parsers “interpret” these.
Taggers provide metadata about language resources and attach these to the resources (“tag”' them).
Resources are referred to using identifiers (PIDs) that can be either transient (for resources that only exist

3 http://www.clarin.eu/

Scientific Workflows

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

59

temporarily, e.g. for the duration of the workflow) or persistent (for resources that will exist beyond the duration
of the workflow) identifiers. These identifiers can be resolved to the location of the resource itself (the
mechanism of which is beyond the scope of this document, since it is CLARIN-specific).

Profile matching is used to determine whether a service (instance) is able to process a resource, in other
words: metadata for the resource and the description of the service are checked to see whether they are
“compatible”. After every processing step the metadata for the resource is updated by the service that
processed it, so that profile matching can be repeated for the next step. Categories used in the metadata are
for example ResourceFormat, AnnotationType, ApplicationDomain, MediaType, etc.

Workflow systems are used to link individual services together in a meaningful way, and should support
IF/THEN/ELSE (and similar) constructs.

CLARIN relies heavily on metadata (metadata is used for all activities, such as browsing for - and describing -
resources, services, tools and workflow operations), the infrastructure used for working with metadata is
standardised within CLARIN, and is called the CLARIN metadata infrastructure (CMDI). The CMDI contains
descriptions of all these different types of elements. The use of CMDI is CLARIN specific and its use is “hidden”
behind the WebService interfaces, therefore it will not show up in the descriptions of the use cases. It is
mentioned here since it aids in understanding the way CLARIN services and resources work together.

In the Language Resources and Technology (LRT) field, as in any scientific field, provenance (source, origin or
history of a resource) is important to be able to reproduce results. This means that provenance is also part of
the metadata stored in the CMDI.

Instead of the explanation of the processes a number of new concepts, words (and buzzwords) are used. It
seems that this is a consequence of a terse compression from the full CLARIN document.

With the whole system in place, users should be able to process language resources in their own virtual
workspace. For example with editors or by having different web services operate on the resources, storing the
(possibly large) resulting resources either transiently or persistently, possibly using fast connections when
needed.

For the use cases only a generic work flow scenario will be addressed, since that is where the involvement of
AAI is most prominent and solutions there will also provide solutions for other possible use cases (such as
browsing for resources, tools or services, and constructing work flows from individual services). This approach
also makes sure that the requirements on GEMbus itself are generic in nature, rather than CLARIN specific
CLARIN specific requirements have to be addressed by CLARIN itself, making use of the generic services
provided by GEMbus.

Scientific Workflows

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

60

10.1.1 Context Diagram

Figure 10.1 shows the context and components involved in this use-case:

Figure 10.1: Context Diagram for the CLARIN workflow use case.

This figure shows an example of the (generic) CLARIN workflow scenario that will be used for the use cases
with respect to AAI. Every link between the different components has a potential link with an AAI infrastructure,
but to avoid cluttering the diagram too much these links have been omitted from the figure. In essence every
step from one entity to another (typically executing a web service) will be done on behalf of the user
(delegation). Since researchers in the LRT field can use resources and services from all over the world, this
implies that a con-federative approach is needed. The “generic” service invocation is shown in Figure 10.2.

Scientific Workflows

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

61

Figure 10.2: Generic service invocation.

10.2 Actors of the System

10.3 Functional View: Use Cases

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Execute Workflow Work Flow Engine, Web
Application, AAI, CMDI,
Storage

Invoke Web Service Work Flow Engine, Web
Service, AAI, CMDI,
Storage

Compose Workflow Web Application, Work
Flow Engine, CMDI,
Storage

Workflow
management

Service Discovery CMDI

Actor Description
Web Application The front-end web based service that allows a user to create,

modify, delete, and execute work flows.
AAI The generic AAI infrastructure; typically a (con)federation but this

also depends on the way the use cases are implemented.
Workflow Engine Can be considered the “back-end” for the web application. Takes

care of the actual execution of a (previously stored) workflow.
Web Service A generic web service actor, the generalised form of any web

service that may play a part in the use cases.
Metadata/CMDI CLARIN MetaData Infrastructure (CMDI), which is responsible for

storing all metadata related to resources and services, including
provenance.

Storage The actual storage for resources. Metadata (including provenance)
is stored in the Metadata/CMDI.

Scientific Workflows

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

62

Feature Use Case Main Actor,
Secondary Actor(s)

Comments

Resource Discovery CMDI

Figure 10.3 presents the global functional view (including all use cases).

Figure 10.3: CLARIN workflow use case diagram

10.4 Dynamic View

10.4.1 Execute Workflow

Use Case GB22 Execute workflow
Actors Work Flow Engine, Web Application, AAI, Metadata/CMDI, Storage.
Detection The Web Application triggers the Work Flow Engine to start the execution

of a Work Flow.
Assumptions The user is authenticated (and authorised) to use the web application and

(by delegation) the WFE. A previously defined Work Flow is available to the
WFE (in storage).

Preconditions User is authenticated, a specific work flow (WF) is selected by the user for
execution as well as the resource to operate on (to be used as input to the
start of the WF).

Scientific Workflows

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

63

Use Case GB22 Execute workflow
Steps Step 1: The Web Application triggers the WFE to start the execution of a

workflow by passing the WF reference and the Resource reference to
operate on to the appropriate WFE function. If the Authentication and
Authorisation Infrastructure is a Web Service, this is done as use case
“Invoke Web Service”.
Step 2: The Work Flow Engine retrieves the WF specification from storage
(see “Invoke Web Service”).
For every step in the WF, the WFE:
Step 3: Checks preconditions.
Step 4: Invokes the individual Web Service ('Invoke Web Service').
Step 5: Stores results and updates CMDI.
After the WF finishes, the WFE:
Step 6: Returns a reference to the resulting resource back to the Web
Application.

Variations Error during WF execution (TBC).
Post-conditions The WF has finished, (reference to) result and metadata is returned to the

Web Application.
Extends/Includes Includes “Invoke Web Service”.
Non-Functional
Issues Is transforming inputs/outputs that may be needed between steps done

beforehand while composing the workflow, or are transformation needs
determined at run-time? (Assumption is the former).

10.4.2 Invoke Web Service

Use Case GB23 Invoke Web Service
Description The actual invocation of a Web Service by a Web Service client (here

typically the WFE or the Web Application).
Actors Work Flow Engine, Web Service, AAI, CMDI, Storage.
Detection WS clients invokes a Web Service.
Assumptions An AAI service or front-end (middleware) is available for performing various

AAI functions (checking tokens, providing tokens for use with web
services).

Preconditions The WS client has some sort of valid token for the user.
Steps Step 1: The WFE requests an appropriate token for calling the Web

Service from the AAI.
Step 2: The WFE constructs the request to the Web Service.
Step 3: The WFE executes the request.
Step 4: The WFE evaluates the return data, updates the metadata if
needed.

Variations
Post-conditions The Web Service executed successfully and returned the results.
Extends/Includes Execute Work Flow.
Non-Functional
Issues

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

64

11 Conclusions

This document presents the definitions of several use cases for GEMBus. These use cases cover what is
believed to be a wide range of application domains and are described according to a well-structured (if not fully
formalised) procedure.

A specific subset of these use cases will be applied in the next phase of GEMBus development; the definition
and selection of its supporting ESB framework, together with the interface requirements that individual services
and its multi-domain nature impose. Furthermore, this validation process will lead to the availability of
prototypes for the selected use cases, and the foundations for the implementation of all of them.

Once these foundations are available, the GEMBus team will have the tools to proceed to the implementation
of the use cases described here, plus those that arise along the lifetime of the project, according to the
incremental procedures described in the GN3 proposal. The formal structure established in this document for
descriptions will constitute the framework for any further analysis of proposed use cases to be considered by
the GEMBus team.

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

65

References

[ACSWS] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull and Massimo Mecella.
“Automatic Composition of Transition-based Semantic Web Services with Messaging”, in
Proceedings of the 31^st VLDB Conference, Trondheim, Norway, 2005.

[AHNET] Arts-Humanities.net
http://www.arts-humanities.net/

[ARGON] C. Barz, M. Pilz, T. Eickermann, L. Kirtchakova, O. Wäldrich, W. Ziegler,Co-Allocation of
Compute and Network Resources in the VIOLA Testbed. CoreGRID Technical Report TR-0051.
www.coregrid.net

[AUTC] A.G. Ganek, T. A. Corbi, "The dawning of the autonomic computing era", IBM Systems Journal,
Vol 42, No 1, 2003.

[AUTCAR] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. O. Kephart, "An Architectural
Approach to Autonomic Computing", International Conference on Autonomic Computing
(ICAC’04).

[AUTCOV] M. Parashar and S. Hariri, "Autonomic Computing: An Overview", Springer Lecture Notes in
Computer Science, volume 3566.

[COUNIVERSE] CoUniverse, a network layer for Ultragrid
https://www.sitola.cz/CoUniverse/index.php/Main_Page

[DRIVER] DRIVER, "Digital Repository Infrastructure Vision for European Research II", D2.1
http://www.driver-support.eu/linkspubs/driverpubs.html

[DSPACE] Dynamic Digital Repository: DSpace
http://www.dspace.org/

[GRID2] Ian Foster, Carl Kesselman, "The Grid 2, Blueprint for a New Computing Infrastructure";
Morgan Kauffman publishers, 2004.

[IST-PHOSPHORUS] IST Project PHOSPHORUS, 6th Framework Program of the European Union.
http://www.ist-phosphorus.eu/

[JANETBS] JANET booking service.
http://www.ja.net/services/video/jvcs/bookingservice/bookingservice.html

[KODAVIS] Collaborative Data Visualisation (formerly KoDaVis). Grid application.
http://www.viola-testbed.de/index.php?id=kodavis

[MDSWS] Rao, J., et al., A Mixed Initiative Approach to Semantic Web Service Discovery and
Composition: SAP’s Guided Procedures Framework, in The IEEE Intl Conf on Web Services
(ICWS’06). 2006.

[OGSA] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel, F.
Siebenlist, R. Subramaniam, J. Treadwell, J. Von Reich, "The Open Grid Services
Architecture, Version 1.0"; Open Grid Forum, July 2006.
http://www.ogf.org/documents/GFD.80.pdf

References

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

66

[OGSAUC] I. Foster, D. Gannon, H. Kishimoto, Jeffrin J. Von Reich, "Open Grid Services Architecture Use
Cases"; Global Grid Forum, 2004.
http://www.gridforum.org/documents/GWD-I-E/GFD-I.029v2.pdf

[OPOB] Xavier Carreras, “Òpera Oberta (Open Opera): The Opera at the University”, PAPWS, Trieste,
July 2009.
http://www.garr.it/eventiGARR/papws/doc/carreras_0709_papws.pdf

[SDR] Krystyna Marek, "Scientific Digital Repositories", OGF Barcelona 2008
http://research.yahoo.com/publication/author/Zha

[SOCSRCH] Agichtein, E.; Gabrilovich, E.; Zha, H., "The Social Future of Web Search: Modeling, Exploiting,
and Searching Collaboratively Generated Content", IEEE Data Engineering Bulletin, Volume 32,
Issue 2, p.52-61 (2009)

[SWS] McIlraith, S.A., T.C. Son, and H. Zeng, Semantic Web Services. IEEE Intelligent Systems,
2001.16(2): p. 46-53

[UNICORE] Uniform Interface to Computing Resources.
www.unicore.eu

[VIOLA] VIOLA Test-bed, Germany.
 www.viola-testbed.de

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

67

Glossary

AAA Authentication, Authorisation and Accounting
AAI Authentication and Authorisation Infrastructure
ADS Additional Services
AM Autonomous Manager
API Application Programming Interface
AS Authentication Service (perfSONAR)
ASP Application Service Provision
CLARIN Common Language Resources and Technology Infrastructure
CMDI CLARIN Metadata Infrastructure
cNIS Common Network Information Service
DRIVER Digital Repositories Infrastructure Vision for European Research
ECMWF European Centre for Medium-Range Weather Forecasts
ESB Enterprise Service Bus
GEMBus GÉANT Muti-domain Bus
GPE Grid Programming Environment
HD High Definition
HLA High Level Architecture
ICT Information and Communication Technology
IDB Incarnation Database
IDM Inter-Domain Manager (AutoBAHN)
IM Instant messaging
IPR Intellectual Property Rights
KoDaVis Collaborative Data Visualisation
LRT Language Resources and Technology
LS Lookup Service
MA Measurement Archive
MCU Multipoint Control Unit
MP Measurement Point (perfSONAR)
MSS MetaScheduling Service
NSS Network Storage Service
OGSA Open Grid Services Architecture
PID Persistent Identifiers
QoS Quality of Service
REST Representational State Transfer

Glossary

Deliverable DJ3.3.1:
Composable Network Services use cases
Document Code: GN3-09-198

68

SF Sensor Framework
SIP Session Initiation Protocol
SLA Service Level Agreement
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol'
TS Target System
TSI Target System Interface
TSS Target System Service
UML Unified Modelling Language
UUDB Unicore User Database
UI User Interface
URL Uniform Resource Locator
VO Virtual Organisation
WF Work Flow
WFE Work Flow Engine
WSDL Web Service Description Language
XML Extensible Markup Language

