

24-05-2011

Deliverable DJ3.3.2
Composable Network Services
Framework and General Architecture:
GEMBus

Deliverable DJ3.3.2 v1.0

Contractual Date: 31-12-2010
Actual Date: 24-05-2011
Grant Agreement No.: 238875
Activity: JRA3
Task Item: T3
Nature of Deliverable: R
Dissemination Level: PU
Lead Partner: RedIRIS
Document Code: GN3-11-002
Authors: Diego R. Lopez (RedIRIS), Yuri Demchenko (UvA), Krzysztof Dombek (PSNC), Mary Grammatikou (GRNET),

Roland Hedberg (UMU.SE), Jordi Jofre (i2CAT), Constantinos Marinos (GRNET), Pedro Martínez-Juliá
(UMU.ES), Antonio-David Pérez-Morales (RedIRIS), Vassiliki Pouli (GRNET), Elena Torroglosa (UMU.ES),
Maja Gorecka-Wolniewicz (UMK-PSNC), Tomasz Wolniewicz (UMK-PSNC), Bartłomiej Idzikowski (PSNC),
Maciej Glowiak (PSNC), Shannon Milsom (DANTE)

© DANTE, on behalf of the GÉANT project.
The research leading to these results has received funding from the European Community’s Seventh Framework Programme
(FP7 2007-2013) under Grant Agreement No. 238875 (GÉANT).

Abstract

This deliverable presents the framework and general architecture for GEMBus, the GN3 federated multi-domain service-oriented
architecture. The aim of GEMBus is to enable collaboration between networks, share services and facilitate composition of more complex
ones, establishing seamless access to the network infrastructure and services.

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

ii

Table of Contents

Executive Summary 1

1 Introduction 3

2 General Architecture Framework for GEMBus 4
2.1 Composable Service Architecture 5

2.1.1 GEMBus in the CSA 8
2.2 Realising GEMBus: Bus of Buses 9

3 The GEMBus Core 12
3.1 GEMBus Registry 12

3.1.1 Information Architecture 12
3.1.2 Service Ontology 13
3.1.3 Import/Export 13

3.2 GEMBus Messaging Infrastructure 15
3.2.1 Security Considerations 17

3.3 GEMBus Security Services 17
3.3.1 General Design 18
3.3.2 Token Description 19
3.3.3 Ticket Translation Service (TTS) 20
3.3.4 Authorisation Service 20
3.3.5 Session Control between SP and STS 21
3.3.6 Integration Flows 22

3.4 Composition 23
3.4.1 Definitions and Technologies 25
3.4.2 Service Details 26

3.5 Logging 28
3.5.1 Security and Privacy Considerations 33

4 Service Lifecycle Model 34
4.1 Infrastructure Services to Support CSA SDF 35

5 Integration Patterns 37
5.1 Single Adaptor: AutoBAHN Case 37
5.2 Per-Service Adaptors: The perfSONAR Case 40

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

iii

5.2.1 Integration Methods 41
5.2.2 Prototype 44

5.3 Publish/Subscribe: The eduroam Case 44
5.3.1 Case Study 46

6 Accessing GEMBus 49

7 GEMBus in Relation to Other Architectures 52
7.1 GEMBus in the Context of Standards 52
7.2 GEMBus in the Context of GÉANT Business Architectures 55

Appendix A GMI Addressing and Routing Mechanisms 57
A.1 Namespaces 57
A.2 Endpoint References 58

Appendix B Sample GEMBus Security Token 62

Appendix C Practical Case: AC Prototype 65
C.1 Autonomic Computing 65
C.2 Basic Architecture 66
C.3 Multi-domain Architecture 69

C.3.1 Local/Passive Components 70
C.3.2 Remote/Active Components 72

C.4 Adding Self-management Capabilities to eduroam Services 74
C.5 Evaluation 75
C.6 Results 79

C.6.1 Initial State Scenario 80
C.6.2 First Remote Domain Started (Alice) 81
C.6.3 Second Remote Domain Started (Bob) 84
C.6.4 Third remote Domain Started (Chuck) 85
C.6.5 Fourth Remote Domain Started (Chuck, again) 85

References 89

Glossary 92

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

iv

Table of Figures

Figure 2.1: Composable Service Architecture and main functional components 8
Figure 2.2: GEMBus functional architecture 9
Figure 2.3: General GEMBus deployment architecture 10
Figure 3.1: Registry imports and exports 14
Figure 3.2: Inputs and outputs of the GEMBus Registry 15
Figure 3.3: Main GEMBus Messaging Infrastructure (GMI) functional components 16
Figure 3.4: Generic use case for STS 19
Figure 3.5: STS: Authorisation Service 21
Figure 3.6: GEMBus integration scheme 22
Figure 3.7: STS integration diagrams in a federated deployment 23
Figure 3.8: Accessing composition services 24
Figure 3.9: Orchestration service 26
Figure 3.10: Orchestration design and management environment (Eclipse-based tool) 27
Figure 3.11: Workflow Execution Server within GEMBus with the WS APIs 28
Figure 3.12: Taverna Workbench design and execution environment 28
Figure 3.13: Common logging architecture 29
Figure 3.14: GLOS functional components 30
Figure 3.15: SOAP messages exchanged among web services 31
Figure 4.1: Workflow for on-demand provisioning of composable services 35
Figure 5.1: Integration of network reservation systems with other composable services 39
Figure 5.2: Concept of the per-service adaptors integration pattern 41
Figure 5.3: Per-service adaptors based on current running services 42
Figure 5.4: Per-service adaptors based on current service source code 43
Figure 5.5: Per-service based on newly developed services 43
Figure 5.6: perfSONAR integration in GEMBus using a per-service adaptor pattern 44
Figure 5.7: eduroam syslog in a publish-subscribe pattern 46
Figure 5.8: Enabling access to a local resource relying on eduroam 47
Figure 6.1: Accessing GEMBus through direct ESB integration 49
Figure 6.2: Accessing GEMBus at the API level within an ESB 50
Figure 6.3: Accessing GEMBus from outside an ESB 51
Figure 7.1: CSA Layering 53
Figure 7.2: Business process decomposition, NREN-NREN, NREN-GÉANT (source: JRA2 T1) 55

Figure C.1: Basic autonomic network management architecture 66
Figure C.2: Autonomic Computing services within GEMBus 68
Figure C.3: Enhanced architecture (Autonomic Computing services) 70
Figure C.4: Remote Autonomic Computing services 73

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

v

Figure C.5: Network environment 74
Figure C.6: Component integration and message flow 75
Figure C.7: Simulated network environment 78
Figure C.8: Control console web application with a few messages per server 79
Figure C.9: Message exchanges, periodically generated messages 80
Figure C.10: Message exchange, remote domain report 82
Figure C.11: Message exchange, remote domain report, duplicated subject 86

Table of Tables

Table 2.1: Service models at OSIMM levels 7
Table 3.1: Message transactions between services 32

Table A.1: Namespace prefix definitions 58
Table A.2: Service properties 59
Table A.3: Service parameters 59
Table C.1: Decider state/action mapping 68

Executive Summary

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

1

Executive Summary

This document presents the framework and general architecture for GEMBus (GÉANT Multi domain Bus), the
federated multi-domain service-oriented infrastructure being developed in the GN3 project. The aim of GEMBus
is to enable collaboration between networks, share services and facilitate composition of more complex ones,
establishing seamless access to the network infrastructure and services. It is founded on a Composable
Service Architecture (CSA), based on a general framework for composite services, and on the industry adopted
Enterprise Service Bus (ESB), extended to support dynamically reconfigurable virtualised services. The
architecture addresses multi domain issues and distributed services composition and orchestration.

GEMBus follows SOA and ESB principles. Service-Oriented Architecture (SOA) allows managing, maintaining
and accessing heterogeneous and geographically sparse resources in a unified way by providing standardised
interfaces and common working environments to their users. The heterogeneous nature of these resources
spans across not only different providers or administrative domains, but across different application domains as
well, aiming (for example) at the integration of bandwidth reservation mechanisms with storage allocation
procedures into what users should perceive as a single service.

One of the key components of SOA architecture is the ESB concept. The functionalities of an ESB are
comparable to those of a physical bus that carries bits among devices in a computer. This means that in an
architecture that uses an ESB, all communications are handled via the ESB, which acts as a broker between
applications, enabling the integration of services and applications.

The bus paradigm provides the additional advantage of freeing service developers from dealing with common
aspects such as authentication, authorisation, accounting, service discovery, and message management. This
enables them to concentrate on the direct implementation of business processes. Most current ESB
frameworks are oriented to single enterprise deployment that relies on a central top authority. GEMBus aims to
bring the advantages of these ESB frameworks into an open collaborative environment, taking a step further
into federated infrastructures and supporting the definition of a multi-domain ESB infrastructure, a “bus of
buses”.

GEMBus provides elements that maintain interoperability services for location, security, messaging and
composition. These components are the GEMBus core. They provide support to services participating in
GEMBus through their whole lifecycle.

Lifecycle management is an important part of the CSA and is key to the underlying design and operation of
GEMBus. It is the basis for CSA provisioning and delivery service, incorporating service request, composition,
deployment, operation, and decommissioning stages.

Executive Summary

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

2

Service integration is a complicated process. One of the objectives of GEMBus is to ease the integration of
existing service platforms in the GÉANT infrastructure and user communities. This document describes the
integration patterns that the GEMBus team identified during their experiments to define the aspects of the
architecture and interface mechanisms GEMBus offers to application or computing elements using its services.

To conclude, the alignment of the GEMBus architecture proposal to the most relevant standards, as well as in
the context of other activities within the GN3 project, is analysed. Finally, a detailed description of the most
elaborated experiment so far, available as a practical case demonstrator of the GEMBus potential, is included
in the Appendix. The work described there is a step towards achieving the challenge of building self-managed
systems by providing the necessary services onto GEMBus.

Introduction

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

3

1 Introduction

This document presents the architecture for the federated multi-domain service-oriented infrastructure under
development in the GN3 project, GEMBus (GÉANT Multi-domain Bus), with the goal of enabling collaboration
among the different actors in the European research networks (and beyond) by sharing services and allowing
them to compose more complex ones. This architecture is based on a general framework for composable
services, founded on the industry adopted Enterprise Service Bus (ESB) and extended to support dynamically
reconfigurable virtualised services. The architecture addresses multi-domain issues and distributed services
composition and orchestration.

The bus paradigm provides the additional advantage of freeing service developers from dealing with common
aspects such as security, service discovery and message management. This enables them to concentrate on
the direct implementation of business processes. Most (if not all) current frameworks are oriented to single
enterprise deployment that though can be extremely complex, rely on a central top authority. GEMBus intends
to bring the advantages of these frameworks into an open collaborative environment, taking a step further into
federated infrastructures and supporting the definition of a multi-domain infrastructure, a “bus of buses”.

The experience in deploying federated architectures dictates a strict adhesion to the principle of keeping
simplicity as the topmost design goal to ease integration of disparate participant infrastructures and to facilitate
interoperation at the common agreed level. With this principle in mind, very few requirements are made for an
infrastructure to become part of GEMBus. Most interoperation mechanisms are regarded as end-to-end issues,
though GEMBus commits itself to provide mediation services for location, authentication, authorisation,
accounting and composition. The components taking care of these mediation services are termed the GEMBus
core. They are intended to provide support to services participating in GEMBus along their whole lifecycle.

The process for service integration can be complicated and time-consuming in many cases. This document
describes the integration patterns that the GEMBus team has identified during the experiments run to decide
the aspects of the architecture presented here. Conversely, discussion is provided on the interface
mechanisms that GEMBus offers to any application or computing element willing to make use of its services.

To conclude, the alignment of the GEMBus architecture proposal to the most relevant standards, as well as in
the context of other activities within the GN3 project, is analysed. Finally, a detailed description of the most
elaborated experiment so far, available as a demonstrator of the GEMBus potential, is included in the Appendix.
The work described there is a step towards achieving the challenge of building self-managed systems by
providing the necessary services onto GEMBus.

General Architecture Framework for GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

4

2 General Architecture Framework for
GEMBus

Service-oriented architectures constitute a significant step in the evolution of distributed computing. Based on
the request/reply design paradigm for synchronous and asynchronous applications, SOA proposes the
modularisation of application business logic and individual functions, providing them as services for
consumer/client applications. Designing according to SOA principles consists essentially in connecting various
services according to common business rules. This makes SOA especially suitable for loosely coupled
distributed applications that communicate with each other to offer interoperability between distributed systems.
It is a paradigm that enables interoperability between heterogeneous and diverse systems and reduces the
complexity of administering their coordinated operation.

SOA encourages software components development for on-demand consumption and typically relies on using
well-known high-level transport protocols1, establishing itself as an extremely flexible connection technology.
SOA principles also influence the business logic of services by encouraging good design, i.e., promoting
modular and dispersed components that can be separately developed and maintained. Services exposed by
the SOA integration capabilities can be composed into composite services spanning multiple domains and
organisations that are, in turn, subject to further compositions. This provides an extremely powerful and flexible
toolset to application developers.

SOA, viewed as a tool for the integration of distributed resources, plays a significant role, not only as manager
of computational resources, but increasingly as aggregator of measurement instrumentation and pervasive
large-scale data acquisition platforms, such as sensor networks. In this context, the functionality of
service-oriented architecture allows managing, maintaining and exploiting heterogeneous and geographically
sparse instrumentation and acquisition devices in a unified way, by providing standardised interfaces and
common working environments to their users.

This is achieved through the properties of isolation from the physical network and from the peculiarities of the
instrumentation, granted by standard middleware, together with secure and flexible mechanisms to seek,
access and aggregate distributed resources. The service-oriented architectures concepts that build upon
service-oriented architecture abstractions are typically specified using XML-based standards and
recommendations. They have the following key characteristics.

1 Web Services, using the HTTP protocol and structured mark-up languages, constitute the archetypal example
of this approach.

General Architecture Framework for GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

5

SOA services communicate with formally defined messages. Communication among consumers and providers
typically happens in heterogeneous environments with little or no knowledge about the other party.
Implementers commonly build SOAs using web services standards, such as Simple Object Access Protocol
(SOAP) [SOAP] and XML-based standard protocol developed by the World Wide Web Consortium (W3C)
[W3C] and supported by the main IT players, that defines a standardised message envelope and a rather free
message payload. Apart from SOAP, it is possible to implement SOA communication using any service-based
technology, such as REST [REST]. REST services operate on URLs that may respond with XML messages as
well as other formats. JavaScript Object Notation (JSON) [JSON] is an alternative to XML for message
exchange.

SOA services are maintained in the enterprise by a registry that acts as a directory listing to store and publish
services. SOA services have self-describing interfaces in platform-independent XML documents. Web Services
Description Language (WSDL) [WSDL] is the standard one for service description when services are
SOAP-based. Web Application Description Language (WADL) [WADL] is the standard XML-based format for
RESTful web services. There is also Universal Service Description Language (USDL) [USDL], a language for
formally describing the semantics of web services to become more practical, enabling users and applications to
discover, process, deploy and synthesise services more easily.

2.1 Composable Service Architecture

Composable Service Architecture (CSA) [CSA] is the general framework on which GEMBus development is
founded. It is based on the industry adopted Enterprise Service Bus (ESB) [ESB], extended to support
dynamically reconfigurable virtualised services. It addresses multi-domain issues and distributed services
composition and orchestration. CSA is based on the basic SOA architectural principles and services interaction
models.

In its evolution and gradual development, GEMBus will adopt SOA best practices and comply with the Open
Group Services Integration Maturity Model (OSIMM) [OSSIMM]. The OSIMM technical standard defines a grid
of seven maturity level and seven dimensions that describe provisioned services and SOA related properties.
The OSIMM maturity levels include:

• Silo

• Integrated

• Componentised

• Services

• Composable services

• Virtualised services

• Dynamically re-configurable services

The seven dimensions define different layers and aspects of the services such as:

• Business view

• Governance and Operations

General Architecture Framework for GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

6

• Methods

• Applications

• Architecture

• Information

• Infrastructure and Management

In the Applications dimension, the SOA-based applications deal with the different components and building
blocks mapped to the above defined maturity levels:

• Modules (OSIMM1)

• Objects (OSIMM2)

• Components (OSIMM3)

• Services (OSIMM4)

• Applications composed of services (OSIMM5)

• Process integration via services (OSIMM6)

• Dynamic application assembly (OSIMM7)

Starting from the level OSIMM4 (services) the information or data are represented as “Information as a service”
(OSIMM4), “Enterprise Business Data dictionary and repository” (OSIMM5), “Virtualised data services”
(OSIMM6) and “Semantic data vocabularies” (OSIMM7). Table 2.1 provides a tabular summary of the service
models at different OSIMM levels.

General Architecture Framework for GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework and General Architecture: GEMBus
Document Code: GN3-11-002

OSIMM

Levels and
Dimensions

OSIMM1

Silo

OSIMM2

Integrated

OSIMM3

Componentised

OSIMM4

Services

OSIMM5

Composable
services

OSIMM6

Virtualised
services

OSIMM7

Dynamically
re-configurable
services

Business view Isolated
business
lines

Business
process
integration

Componentised
business

Componentised
business offers
services

Processes
through
services
composition

Geographical
independent
service centres

Mixed match
business and
context-aware
capabilities

Organisation Ad hoc IT
strategy and
Governance

Ad hoc
enterprise
strategy and
Governance

Common
Governance
process

Enabling SOA
Governance

SOA and IT
Governance
Alignment

SOA and IT
Infrastructure
Governance
Alignment

Governance
through policy

Methods Structured
analysis and
Design

Object
Oriented
Modelling

Component
based
development

Service Oriented
Modelling

Service
Oriented
Modelling

Service
Oriented
Modelling for
Infrastructure

Business
Grammar
Oriented
Modelling

Applications Modules Objects Components Services Applications
composed of
services

Process
integration via
services

Dynamic
assembly,
context-aware
invocation

Architecture Monolithic
architecture

Layered
architecture

Component
architecture

Emerging SOA SOA Grid based
SOA

Dynamically
re-configurable
architecture

Information Application
specific

LOB or
enterprise
specific

Canonical models Information as a
service

Enterprise
Business Data
dictionary and
repository

Virtualised data
services

Semantic data
vocabularies

Infrastructure
(and
Management)

LOB Platform
specific

Enterprise
standards

Common re-
usable
infrastructure

Project based
SOA
environment

Common SOA
environment

Virtual SOA
environment,
S&R

Dynamic sense,
Decide and
Respond

Table 2.1: Service models at OSIMM levels

General Architecture Framework for GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

8

A general SOA solution qualifies for OSIMM5/OSIMM6. The extensions proposed by CSA are intended to
provide the functionality to achieve the highest level of maturity.

2.1.1 GEMBus in the CSA

CSA provides a framework for the design and operation of composite services provisioned on-demand. It is
based on component service virtualisation which, in turn, is based on the logical abstraction of the component
(physical/real) services and their composition. Composite services may also use orchestration services
provisioned as a CSA infrastructure service to operate composite service specific workflows. One of the
important components of the proposed architecture is the CSA middleware that should ensure smooth service
operation during all stages of the service lifecycle.

To be included in the CSA infrastructure, component services need to implement an adaptation layer that is
capable of supporting major CSA provisioning stages, in particular, service identification, service metadata
(including the required security context) and provisioning session management. CSA also defines and
implements special adaptation layer interfaces. This provides the necessary functionality to support dynamically
provisioned control and management.

Applications and User Terminals

Composition
Layer
(Reservation
SLA Negotiatn)

Logical Abstraction Layer for Component
Services and Resources

Control &
Management
Plane

(Operation,
Orchestration)

Composable Services Middleware
(GEMBus)

Network InfrastructureCompute
Resources

Storage
Resources

Component Services & Resources

Proxy (adaptors/containers) ‐ Component Services and Resources

Proxy (adaptors/containers) – Composed/Virtualised Services and Resources

MD SLC Registry Logging Security

User
Client

Data links/flows

Control links

Figure 2.1: Composable Service Architecture and main functional components

The middleware is a key component of the CSA that provides a common interaction environment for both
component services and composite services. Besides exchanging messages, CSA middleware also

General Architecture Framework for GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

9

contains/provides a set of common infrastructure services required to support reliable and secure (composite)
service delivery and operation. The ongoing GEMBus development will provide a generic reference CSA
middleware implementation. Figure 2.2 illustrates the functional architecture for GEMBus, including its three
main functionality groups:

• The GEMBus Messaging Infrastructure (GMI). This includes a messaging backbone and other message
handling supporting services such as message routing, configuration services, secure messaging and
event handler/interceptors. The GMI is built on and extends the generic ESB functionality to support
dynamically configured multi-domain services.

• GEMBus core infrastructure services. These support reliable and secure composable service operation
and the whole service provisioning process. These include such services as Registry, Composition,
Security and Logging, all provided by the GEMBus environment itself.

• Component services. Although typically operated by independent parties, they need to implement
special GEMBus adaptors or use special plug-in sockets that allow their integration into the GEMBus
CSA infrastructure.

GEMBus Infrastructure Services

GEMBus
Registry

Composition &
Orchestration

Logging Service

Service 1
(CSrvID,
SesID)

Messaging Backbone Routing

Configurat
ion

Interceptors
AspOrient

Security Service

Message Handling

GEMBus Messaging
Infrastructure (GMI)

CSrvID – Composite Service ID
SesID – Provisioning Session ID

Service 2
(CSrvID,
SesID)

Service 3
(CSrvID,
SesID)

Service #N
(CSrvID,
SesID)

Service
Template

…

Composite Service (Srv1, Serv 2, ServK, ServTemplate)

GEMBus Component Services

Figure 2.2: GEMBus functional architecture

2.2 Realising GEMBus: Bus of Buses

The actual realisation of GEMBus as an SOA multi-domain middleware, able to support the deployment and
composition of services spanning different management domains, calls for applying the federation mechanisms
that have come to play a key role in the collaborative environment of current academic networking. Federation
preserves management independence for each party as long as they obey the (minimum) set of common

General Architecture Framework for GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

10

policies and technological mechanisms that define their interoperation. Metadata constitute the backbone of
such federations, as they describe the components provided by each party and their characteristics in what
relates to the federated interfaces.

The ESB paradigm for SOA implementation provides the additional advantage of freeing service developers of
dealing with common aspects such as security, service discovery and message management. This enables
them to concentrate on the direct implementation of business processes. Most (if not all) current ESB
frameworks are oriented to single enterprise deployment that, although it can be extremely complex, relies on a
central top authority. GEMBus intends to bring the advantages of ESBs into an open collaborative environment,
taking a step further into federated infrastructures and supporting the definition of a multi-domain ESB, a “bus
of buses”.

Figure 2.3Figure 2.3 depicts the general deployment architecture for GEMBus, where different ESB instances
(of possibly different ESB frameworks) at different management domains are federated. Services in one of the
instances can seamlessly access those services made available by the others via the federation.

A common service registry provides the metadata backbone for the federated bus. Service descriptions are
updated at the common registry and made known at the participant instances through the local registries. They
ensure absolute management independence for each participant. To support different ESB frameworks and
implementation styles, the registry must provide a semantically rich internal format, supporting updates and
queries by disparate means, while maintaining a coherent ontology for the services available at the federated
ESB.

Since any service integrated in GEMBus offers its interfaces according to SOA principles, services integrated in
other SOA frameworks (essentially web services) will be able to access GEMBus services as well by querying
the registry using their own means, though the added value provided by GEMBus integration will not be
available: neither integration can be complete, nor pure business logic orientation in service development
seems attainable.

Figure 2.3: General GEMBus deployment architecture

General Architecture Framework for GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

11

Core infrastructure services can be deployed at any participating instance, providing additional properties on
resilience, load balance and flexibility. The architecture supports the existence of special-purpose or common
ESB instances to provide specific or somewhat closely related services, or as an additional security measure.
In some cases, seamless access to these core services in such a distributed manner may require the
implementation of specific interfaces as service binding components.

Component services can be statically deployed by their developers at a specific ESB instance or dynamically
instantiated through service bundles available at specific repositories, connected with code repositories so the
development activities can be integrated as well in the service lifecycle. OSGi [OSGI] is the most promising
technology to achieve these goals. Such repositories have already been demonstrated elsewhere [OSAMI].
Through integration with the GEMBus registry, these repositories will become the basic support for service
lifecycle management.

The experience in deploying federated architectures dictates a strict adhesion to the principle of keeping
simplicity as the topmost design goal to ease integration of disparate participant infrastructures and to facilitate
interoperation at the common agreed level. With this principle in mind, requirements for an SOA infrastructure
willing to become part of GEMBus are limited to a few basic aspects related to the following:

• Messaging: in aspects associated with routing and traceability.

• Security: in what corresponds to the protocol used to exchange and collect statements.

• Service descriptions: in the specification elements to make them available at the registry.

All other interoperation mechanisms are regarded as end-to-end issues, involving the service consumer(s) and
producer(s), though GEMBus commits itself to providing mediation services that, based on the registry, are
able to deliver the following:

• Integrated authentication and authorisation.

• Service access and usage accounting.

• Composition mechanisms.

Any other service, interface or constraint on participating services shall be considered as added value that user
applications are free to use or honour, configuring what can be seen as specific user communities inside
GEMBus, either as part of specialised buses with a tighter coupling that takes advantage of the common
GEMBus services or as a service cloud oriented to specific usage patterns or application domains.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

12

3 The GEMBus Core

The GEMBus core is constituted by those elements that provide the functionality required to maintain the
federation infrastructure, allowing the participant SOA frameworks to interoperate in accordance with the
principles previously described. This section describes these elements, how they are used to establish the
GEMBus foundations and how they can be used by the participating services.

The GEMBus core comprises two types of elements, combined to provide the functional elements described
below according to the functionalities of the service frameworks connected to GEMBus:

• Core components that form the federation fabric, enforcing its requirements in regard to service
definition and location, routing of requests/responses and security. These elements are implemented by
specific software elements and by extending and profiling the service frameworks to be connected.

• A set of core services that provide direct support to any service to be deployed in GEMBus, such as the
STS or the Workflow Server described below. These core services are invoked by the core elements as
part of their functions. They can be called from the code implementing any service deployed in GEMBus.
Furthermore, as any other service taking part in the infrastructure, they are suitable to be integrated
within composite services.

3.1 GEMBus Registry

The registry is an absolutely vital component of GEMBus. Distributed services cannot be used if there is no way
to find them and learn what they can do. Since GEMBus is a multi-domain, multi-protocol environment the
demands on the registry are especially severe.

3.1.1 Information Architecture

JRA3 T3 expects GEMBus to be used, at least initially, to bring together already existing services. This means
that the GEMBus team must deal with service descriptions that are made in already existing formats such as
WSDL and WADL. It is important to note that the task is to store these in the registry with metadata about the
service.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

13

Why is metadata needed?

WSDL, for example, can specify the operations available through a web service and the structure of data sent
and received, but it cannot specify the semantic meaning of the data or semantic constraints on the data. This
requires programmers to reach specific agreements on the interaction of web services and makes automatic
web service composition difficult [SEWSR].

To store this extra information the Web Ontology Language (OWL) [OWL]/Resource Description Language
(RDL) [RDF] combo has been selected. There are many reasons to use OWL, including:

• The larger expressiveness compared with (as an example) XSD (XML Schema Definition).

• Simpler version handling.

• The ease in which to add rules on top of the ontology using OWL.

• Facilitate more complex searches and reasoning algorithms.

As a consequence, service information can be published, retrieved and interlinked on the Web according to the
principles of Linked Open Data [LINKEDDATA].

3.1.2 Service Ontology

At present, there is no clear candidate for the position of service ontology. There are many candidates with
advantages and disadvantages. The eventual choice will not change the architecture of the service, although it
will affect what information can be stored.

Apart from the service ontology, ontologies for describing organisations, persons, pricing, legal requirements,
etc. are needed. Some of these can be built on existing ontologies such as those defined by the FOAF project
[FOAF]. Others will be constructed as needed.

3.1.3 Import/Export

In many cases GEMBus will act as the glue between ESBs. The ESBs normally have a registry of their own, so
a way must be defined for importing service descriptions from the ESB registry to the GEMBus registry. In
addition, a way to export service descriptions from the GEMBus registry to an ESB registry must be defined.
Both of these flows may be subject to filtering, so not all services descriptions will be shared by all the registries.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

14

Figure 3.1: Registry imports and exports

Since the GEMBus registry provides more information about the services and their environment than the ESB
registry does, the GEMBus registry must be accessible directly. As it is expected to work in an already existing
environment, it is not appropriate to make bold assumptions as to which protocols people should use. The most
commonly used protocols should be supported, such as the following:

• Atompub/Opensearch

• RESTful queries

• SPARQL

Note that when this document refers to the GEMBus Registry, it does not imply that only one is envisaged. It is
most likely that there will be more than one. It is expected that these registries exchange information and
synchronise. JRA3 T3 envisages using Pubsubhubbub [PUBSUBHUBBUB] for this communication to make it
easy to set up a new registry and pull necessary service descriptions from existing registries.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

15

Figure 3.2: Inputs and outputs of the GEMBus Registry

3.2 GEMBus Messaging Infrastructure

Existing ESB frameworks and implementations incorporate a centralised model for message handling where a
domain central message processor (that also provides inter-domain message routing when required) processes
all intra-domain messages. Message processors in this case act as a collapsed messaging backbone. This
means that to send or receive messages all services need to connect to one of the adapters supporting specific
service related/defined message-level protocols. These adaptors are typically connected to an assigned port.

The GEMBus Messaging Infrastructure (GMI) extends this functionality in the multi-domain environment
considered by GEMBus by means of the following major structural and functional components:

• A Message Processor, through adequately tailored standard ESB implementations.

• Service interfaces/adapters, connecting component services that may use different native interfaces.
These include the mechanisms for message format transformations and data mappings, though these
functionalities will typically be configured in separate ways.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

16

• The context handling for messages and services, including session support.

• Aspect based interceptors and event handlers, provided as specific configurations to standard
implementations.

• A Message Routing Module, by means of a standard message router deployed and configured
accordingly.

• A Configuration Manager that supports the dynamically configuration of GMI specific components to
enable a smooth GEMBus operation.

The Registry will store and provide the GMI components with service information on location, configuration and
properties. These components will make use of the Registry either by using the local, internal ESB registries for
local component services, or by directly querying the common GEMBus Registry service. These components
will make direct use as well of the GEMBus Logging Service (GLOS) logging facility to track message
exchange in a way that is transparent to service developers and operators. See section 3.5 for more
information.

Figure 3.3 illustrates the GMI functional diagram and the interactions among its main functional components.
The architecture is conceived to facilitate the maximum reuse of existing ESB frameworks and to achieve the
required GMI functionality by adding new pluggable modules or providing appropriate configuration information
to a typical ESB implementation. Figure 3.3 shows the functionality of the standard ESB implementation as
available at the inner Message Processor.

ReqSrv
Adaptor

Registry
Service

Message Processor (standard)

ReqSrv
Adaptor

ProvSrv
Adaptor

ProvSrv
Adaptor

Resolver
Router

Interceptor
AspectOrient

SesCtx
Handler

Events
Handler

Configurat
Manager

Logging
Service

Reqster/
Respder

Reqster/
Respder

Provider
Service

Provider
Service

Requester
Service

Requester
Service

Ext Security
Services

Reqster/
Respder

MsgSecurity
An/Az/Policy

Orchestration
(Workflow)

Logger Configuratn

GEMBus
SecServ

Composition
(Workflow)

MsgAC
PEP/PDP

Security
Callout

Figure 3.3: Main GEMBus Messaging Infrastructure (GMI) functional components

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

17

GMI provides a transparent re-configurable message exchange environment for service interaction and
integration with the following core functionality:

• GMI configuration allows service virtualisation and dynamic configuration (without the whole GEMBus
infrastructure re-deployment). Common GMI configuration patterns can be defined as GMI profiles,
identified by designated names that can be referred by GEMBus services.

• GMI supports event driven services and allows configurable event recognition, alarming and recording,
using standard ESB event handler and interceptors that can be configured via well-known mechanisms.
This functionality is specifically required for, and targeted to, support service orchestration, workflow
management, logging and accounting.

• GMI allows integration of SOAP and REST-based services by supporting the corresponding protocols.
GMI supports transparent mapping between these two types of services, in particular for composite
services to allow integration.

Routing takes place at the messaging layer and uses services identification, both as an endpoint reference
(EPR) for SOAP messages and as a URL (used in RESTful services). Appendix A describes the conventions
that define names and identifiers for the GEMBus EPRs, entities, elements, attributes and properties.

3.2.1 Security Considerations

The GMI provides the basic message level security using WS-Security mechanisms to protect message
integrity and confidentiality. However, it also provides integration with the lower layer Transport level security
and support for protocols as TLS/SSL. The GEMBus backbone could be run in a separate VPN domain
connected to the participating domains. It is important to note that the collapsed backbone architecture requires
the intra-domain messaging exchange environments to be secured and trusted at the messaging level.

The GMI security services are an integral component of the overall GEMBus infrastructure and they support the
whole service lifecycle. Consequently, they support session-related security context management. GMI
provides special functionality for security session context management by securely binding the session security
context to the session ID. This is supported both at the GMI level and the GEMBus service level provided by
the GEMBus Security Token Service (STS).

EPRs contain information critical to service operation. Therefore, all or some of their components must be
protected. Integrity and confidentiality of the EPR in total or its elements can be achieved by applying standard
XML Signature and XML Encryption methods.

3.3 GEMBus Security Services

Security mechanisms must comply with requirements that may conflict with security, privacy and simplicity of
use. It is important that the security protocols deal with user attributes and related information in an appropriate
manner, taking the conservative disclosure of attributes and abiding to user privacy policies whenever possible.
It is also important that these directives are enforced by all entities, both in the infrastructure itself and in the
participant services, dealing with user data in a consistent manner. From the point of view of services, is very
important to protect information by ensuring the identity of consumers who use the services. The most

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

18

adequate manner to satisfy these requirements relies on the use of a token that allows the transfer of security
data along the exchanged messages.

3.3.1 General Design

The mechanisms needed to provide secure communications within the GEMBus architecture base their
operation on the STS. This service, described in WS-Trust, makes it possible to issue and validate security
tokens. The GEMBus STS will be aligned with the WS-Trust interoperability profile defined by SWITCH and the
EMI [WSP].

Web Services Security [WSS] is a communication protocol that provides the means for applying security to
web services. It is a member of the WS-* family of web service specifications and was published by OASIS
[OASIS]. It is a flexible and feature-rich extension to SOAP to apply security to web services. The protocol
specifies how integrity and confidentiality can be enforced on messages. It allows the communication of various
security token formats, such as SAML [SAML], Kerberos [KERBEROS] and X.509 [X509]. Its main focus is the
use of XML Signature and XML Encryption to provide end-to-end security. The protocol is officially called WSS
and is developed via committee in Oasis-Open. It is associated with the following approved specifications:
WS-Trust, WS-SecureConversation and WS-Policy.

WS-Trust [WST] is a WS-* specification and OASIS standard that provides extensions to WS-Security,
specifically dealing with issuing, renewing and validating security tokens, as well as how to establish, assess
(the presence of) and broker trust relationships between participants in a secure message exchange. WS-Trust
defines:

• The concept of an STS: A web service that issues security tokens as defined in the WS-Security
specification.

• The formats of the messages used to request security tokens and the responses to those messages.

• Mechanisms for key exchange.

In the GEMBus STS, a different element carries each of these actions. The Ticket Translation Service is
responsible for generating valid tokens in the system according to the received credentials. Token validation is
performed by the Authorisation Service, which can also retrieve additional attributes or policy rules from other
sources to perform the validation.

The Ticket Translation Service (TTS) mostly2 relies on external identity providers that must verify the identity of
the requester based on valid identification material. To support a large amount of services, the application of
different authentication methods must be ensured. This must include the support of currently standardised
authentication methods as well as methods incorporated in future. In this respect, there will be a direct usage of
the eduGAIN identity federation services. eduPKI, TCS and other IGTF accredited identity infrastructures will
be a key starting point.

The Authorisation Service (AS) is responsible for checking the validity of the presented tokens. In this case, the
requester is usually a service that has received a token along with a request message and needs to check the

2 Certain authentication mechanisms, such as those defined in the DAMe and Moonshot profiles, probably
require a direct identification by the module.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

19

validity of the token before providing a response. Checks carried out on the token can be related to issue date,
expiration date or signature(s). This process can also be associated with more complex processes of
authorisation that imply attribute request and check security policies. If the token is valid, the AS provides an
affirmative answer to the service.

Figure 3.4: Generic use case for STS

Figure 3.4 depicts an example of the messages exchanged when one user tries to access a service using
tokens to secure the connection.

First, the service consumer initialises and sends an authentication request to the STS. The STS then validates
the consumer credentials and issues a security token to it. With the token, the consumer sends a request
message including the token to the producer. The consumer sends the token to the STS to check its validity.
After running its validation process, the STS sends a response with the status of the token to the producer,
which processes it and replies to the consumer.

3.3.2 Token Description

The WS-Security specification allows a variety of signature formats, encryptions algorithms and multiple trust
domains. It is open to various security token models, such as X.509 certificates, userid/password pairs, SAML
assertions and custom-defined tokens.

The GEMBus TTS will support transformations among different token formats, according to service descriptions
as stored in the Registry. Appropriate profile definitions will describe these formats. Nevertheless, the canonical
GEMBus security token (applicable by default in all GEMBus-supported exchanges) is the relayed-trust SAML
assertion originally defined within the GN2 project to provide identity information in scenarios where a service is
acting on behalf of a user identified through an identity federation.

The SAML construct used in this case is able to convey information about the user accessing the producer. It
fulfils two essential constraints:

• It must be bound to the consumer by the IdP, so it is possible to check that the information it contains
about the user has been legally obtained.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

20

• It must be bound to the producer by the consumer, so a potentially malicious producer cannot use this
information to further impersonate either the consumer or the user.

To comply with these two requirements, the producer sends a SAML assertion expressing data related to the
authentication with:

• A valid audience restricted to the resource it is addressed to, through a SAML condition element
containing an URI uniquely identifying the resource.

• A statement that this specific method of relayed trust must be used to evaluate the assertion, through a
specific value in the SAML construct identifying the subject confirmation method. This value is the URI
in the eduGAIN namespace: urn:geant:edugain:reference:relayed-trust.

• The SAML assertion(s) received from the IdP as evidence for this confirmation process, as part of the
SAML element SubjectConfirmationData.

A sample SAML assertion generated according to these procedures is shown in Appendix B.

3.3.3 Ticket Translation Service (TTS)

The ticket translation service (TTS) is responsible for issuing, renewing and converting security tokens,
responding to consumer requests for issuing, renewing or converting security tokens for services that require it.

Each of these operations can only be done by the TTS (unlike security token validation that can be done either
by the own service or at the framework integration elements such as interceptors, message routers or binding
components).

The main TTS operations are:

• Issuing: To obtain a security token from an identity credentials (Identity Token).

• Renewing: To renew an issued security token.

• Converting: To convert a security token type to another security token type.

The TTS operation is as follow:

1. The consumer obtains an identity token (SAML Assertion, eduGAIN token, etc.) from an identity
infrastructure.

2. The consumer sends a request for issuance, renewal or conversion to the TTS using either the Identity
Token (issuance) or a Security Token (renewal or conversion).

3. The STS validates the consumer’s token (using security policies) and sends a security token to the
consumer.

3.3.4 Authorisation Service

The AS is responsible for supporting the token validation functions, responding to requests for validating tokens
of consumers and services that require it.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

21

Figure 3.5: STS: Authorisation Service

The token validation process can be performed by the STS itself or act as a proxy redirecting the validation
process to the external service that generated it. For external validation, the Authorisation Service consults an
external service or IdP and forwards the response to the STS consumer. As Figure 3.5 shows, when the
Authorisation Service itself performs validation, the process must verify the information contained in the token
checking the issuer, issue and expiration date, signatures, etc. In addition to the token, the Authorisation
Service can perform a more complex authorisation process, retrieving attributes related to the token subject
and consulting a Policy Decision Point (PDP) for authorisation decisions.

3.3.5 Session Control between SP and STS

Session control is the process of keeping track of consumer activity across different levels of interaction with
the producer.

Assuming that each message to a service is attached with a token that the service must validate at the
Authorisation Service, this will very likely mean a high workload for the STS. The objective of managing
GEMBus sessions is to speed up the security system performance without compromising security goals.

There are several ways to strengthen the validation of the tokens based on the idea of the sessions. First,
optimisations can be applied to the token validation mechanism done by the STS. One proposal is that the STS
temporarily stores a reference to each token validated. If, a short time later, the STS returns to receive a
request for the same token, it does not need to revalidate the token. The idea is close to the use of a cache,
obtaining a performance similar to a session as long as the reference is in the listing. This improvement has the
advantage that it does not involve changes in the requesters that make use of STS.

On the other hand, it is possible to include a new type of token called session token that is returned to the
requester after successful validation in the STS. The main feature of this type of token is rapid validation at the
expense of lower security features compared to a normal token, though this can be alleviated (if not solved) by
reducing its lifetime. When the requester makes a new request for validation to the STS, it can include the two
tokens or just the Session Token. When the STS receives the query, the AS first checks the Session Token
and, if it is valid, the STS can respond directly to expedite the process. In contrast to the previous mechanism,
this method involves the adaptation of STS requesters to manage the Session Token.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

22

3.3.6 Integration Flows

The architecture proposed by GEMBus is based on message exchanges performed by different services that
can be connected in many ways. Since the ESB is the main integration mechanism provided by GEMBus, and
it can also act as a container, it is possible to develop and deploy a service directly on the bus. But it is more
interesting to exercise its integration capabilities, such as interceptors, message routers and binding
components. Whether deployed inside the bus or running as an external service, the STS can be used in a
service composition to transparently provide its capabilities, using the abovementioned mechanisms.

Figure 3.6: GEMBus integration scheme

Figure 3.6 illustrates a scenario in which a Security Token Service extended with support for session tokens is
integrated in the GEMBus architecture. In this example, the consumer obtains an identity token (a SAML
assertion, for example) from an identity infrastructure. Then it sends an authentication request to the STS using
the identity token. The STS validates the consumer identity token and issues a Security Token (ST) to the
consumer. With the new token, the consumer sends a request message to the provider that is intercepted by
an element that extracts the ST and sends a token validation request to the STS. The AS module validates the
consumer token and issues a response with a validated security token with an optional Session Token (SeT).
Finally, the interceptor passes the message to the provider. It processes the consumer request and sends a
response message to the consumer.

In addition to the flow described here, the SPs deployed in GEMBus can validate the tokens themselves by
contacting the STS.

Figure 3.7 shows two more detailed interaction diagrams, illustrating how the federated ESB nature of GEMBus
can be applied to get advantage of distributing the STS components in different bus instances and of existing
identity infrastructures. It is important to note that whenever an external message enters the bus, it must be
translated into internal format by an adapter. The reverse process should be done with messages that must
leave the bus to be comprehensible to external entities.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

23

Figure 3.7: STS integration diagrams in a federated deployment

3.4 Composition

Based on an SOA, GEMBus will comprise a group of loosely coupled, reusable, composable and (probably)
distributed services. There is a need for a feasible way to compose those services to build up more complex
and smarter services. That functionality will be provided through the Composition core service, which will
enable GEMBus to aggregate multiple simple services, as well as other compositions, into new services.

Figure 3.8 illustrates how service composition is offered as a service on itself, so composite services can be
transparently accessed and instantiated by consumers.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

24

Figure 3.8: Accessing composition services

When talking about service composition, there are two main approaches, Choreography and Orchestration, of
which the latter is the most interesting, as it is a way to implement choreographies. An orchestration is an
executable description of services interactions and messages manipulation, so an execution engine and a
description language are required.

Continuing with the standards basement of GEMBus, WS-BPEL [WSBPEL] is the OASIS standard for the
specification of executable and abstract business processes. While the executable business processes model
the actual behaviour of the interaction parties, abstract business processes are meant to provide a partially
specified description of the interaction, hiding some of the required concrete details.

Once the language used to specify orchestrations is stated, a service to process and execute those
specifications should be chosen. That service, previously called execution engine, is bundled out of the box
with most ESBs, allowing for a seamless installation by the final GEMBus administrators. Apache ODE
(Orchestration Director Engine) is the choice as execution engine within FUSE, the base framework for the
current GEMBus development effort.

Finally, a friendly environment to fill the gap between analysts and developers looks interesting. A language is
required to model the processes graphically to allow analysts to express their knowledge and to transmit to
developers what they want to do and how it should be done. That expressiveness is provided, once again
following a standard language, thanks to BPMN [BPMN]. The resulting model in BPMN can later be
transformed to an executable process in WS-BPEL by the developers. Once it is fully implemented and tested,
the environment should also enable administrators to send the processes to production on the execution
engine and to administer them. All that functionality will be unified in a single tool, shared by all the relevant
stakeholders and built up from the extensively used, open source platform, Eclipse.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

25

In addition to the orchestration service, interest in a workflow management system has risen. The concept of
workflow, even having a lot in common with orchestration, have some differences that are not very clear, and
authors cannot find a definition widely approved by the community. Avoiding the differentiation of both
composition terminologies, a Workflow service will be presented. That service will consist of a set of tools
oriented, but not limited to, the design and execution of scientific workflows and in-silico (via computer
simulation) experimentation. That cross-platform set of tools will enable users to compose not only web
services, but also local Java services (Beanshell scripts), local Java APIs, R scripts and import data from Excel
or in CVS format.

3.4.1 Definitions and Technologies

Prior to going deeper into the details of the Composition services, following are some of the terms and
technologies related to those services. It is not the intention to give a formal definition, but to explain how these
terms are understood in the GEMBus architecture.

WS-BPEL: Web Services Business Process Execution Language (BPEL) is an XML-based executable and
description language to define and implement business processes using web services. It is also capable of
manipulating the messages and their content. BPEL tries to bring programming in the large to the world of web
services. In addition, BPEL is used to implement business protocols.

BPMN: Business Process Modelling Notation (BPMN) is a graphical representation for Business Processes
Modelling. BPMN is aimed to fill the gap between the different stakeholders that take place from the analysis of
a business process to the implementation and management. It also provides a mapping to the underlying
constructs of execution languages (BPEL).

Apache ODE: ODE is the execution engine for WS-BPEL bundled with FUSE, the current service framework in
use within GEMBus. It is responsible for the web services communication stated in the processes, handling the
data flowing between them and recovery from errors as described in the compensations.

Taverna: This is a Workflow Management System (WMS) that includes the Taverna Workbench (a desktop
client application that is also able to run workflows), the Taverna Server (which allows for remote execution of
workflows. the component inside GEMBus) and the Taverna Command Line Tool for terminal execution of
workflows. Taverna is mainly oriented to scientific workflows and it has several services related to, but is not
limited to, that community.

Orchestration: An orchestration is a recursive composition of services presenting the result as a new service.
Orchestration depends on WSDL to represent the services interfaces and to provide the input and output points
of the orchestration. Orchestrations are written in WS-BPEL and deployed by an execution engine.
Orchestrations often cross domain/institution boundaries and are long-lived services, sometimes requiring
hours or days to complete.

Workflow: A workflow is a single lane on an orchestration or a composition within the Taverna environment. In
the Taverna domain, a workflow is also the execution unit (to be run on the GEMBus Taverna Server).

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

26

3.4.2 Service Details

The orchestration service will comprise the following:

• Execution Engine (Apache ODE)

• Design, implementation and management environment: an Eclipse-based tool.

Figure 3.9: Orchestration service

There are two interfaces for management, ProcessManagement to manage deployed processes and
InstanceManagement to manage the running instances of the deployed processes. The methods of those
interfaces can be executed via the GEMBus Plug-in of the Eclipse tool. The initial version of the Eclipse tool is
built up on the basis of Intalio Designer 6.0.3.050, which has some proprietary code added to the base
Eclipse 3.4.1. This enables BPMN design and manipulation to transform it into a BPEL document.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

27

Figure 3.10: Orchestration design and management environment (Eclipse-based tool)

At the time of writing, the official OSGi version of Taverna Server has been rescheduled and is expected to be
released in Q2 2011 (Alpha version for January). In the meantime, attempts to make the current release
(v2.2.a1) comply with the OSGI standard have begun.

Taverna is in the process of re-engineering the core of the application to offer an OSGi-based distribution. This
will enable developers to integrate the core in their applications or web portals. The intention is to deploy an
execution server inside GEMBus. As usual, scientific simulation requires huge amounts of data to be processed
and transferred, the incorporation of the execution server where the services live will enable stakeholders to
use internal services and execute them on-site, resulting in a considerable bandwidth increase as the data now
travels inside the GEMBus boundaries.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

28

Figure 3.11: Workflow Execution Server within GEMBus with the WS APIs

Taverna also allows for local execution. This can be of interest for testing purposes and to simulate simple
workflows that do not require large amounts of data and computation time. This local simulation is integrated
into the desktop application, Taverna Workbench.

Figure 3.12: Taverna Workbench design and execution environment

3.5 Logging

Logs constitute an important source of information of service performance. They provide a great amount of data
for monitoring and diagnostics purposes. When properly produced and processed, they can help to achieve
efficient operations and to obtain a better understanding of service behaviour. As these logs comprise huge
amounts of data they need special pre- and post-processing to actually generate useful information.

The rising paradigm of web services is creating a new model of interaction in the network service environment,
which requires richer information than that captured in the traditional Web server logs. The source of

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

29

information of Web server logs comes from links accessed by users. Such logs are not capable of capturing
more complex interactions, such as service utilisation and/or composition, which are typical interactions
supported by the web services technology. Moreover, the Web server log ends on the threshold of its own Web
site. It does not cross the firewall’s boundaries. It does not know about its partner’s services, even if it is an
important part of its services as the end user perceives it. Therefore, there is a need for new mechanisms for
capturing, monitoring and logging the services usage that considers the specific needs of the processes
supported by SOA.

The GEMBus multi-domain nature requires specific mechanisms for producing and processing meaningful log
records. Figure 3.12 depicts the proposed architecture for the GLOS. The GLOS architecture consists of a
Common Log Repository, where all logging data is stored and a GLOS service instance is deployed at every
participating ESB.

Figure 3.13: Common logging architecture

There are at least two ways to implement a GLOS. One of them is by changing the source code of each service
willing to be integrated in GEMBus to call the incumbent logging service every time it is required. However, the
main disadvantage to this solution is the lack of ownership over third parties’ code. There is no guarantee that
they will be willing to change it on another’s behalf. Furthermore, modifying existing applications may be time
consuming and error prone. An alternative is to use message interceptors (in most of the cases, SOAP
messages). This is the approach that GEMBus takes. Figure 3.14 shows the functional modules of the GLOS
service.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

30

Figure 3.14: GLOS functional components

Services integrated in GEMBus use the message-oriented middleware (MOM) infrastructure offered by the GMI
to send their messages. The function of GLOS is to catch and record every message exchanged through the
GMI, as those messages are precisely the source of information to evaluate GEMBus services behaviour and
performance.

The Message Interceptor module aims to catch every message exchanged through the GMI. GLOS will take
advantage of the GMI message interceptors, extending them with specific capabilities for log data collection.
The use of interceptors to implement GLOS prevents us from changing the service code, providing
independence and flexibility on log management, allowing a log structure to be adapted according to eventual
new needs without modifications on the existing services.

The Message Processor module receives the intercepted message data from the Message Interceptor module
and extracts the useful information to log using parsing mechanisms. The GLOS Message Processor needs to
know the message envelope structure, as well as some agreed information transmitted in them, for logging
purposes that must be acknowledged by services and the GMI.

The Log Creation module creates a log record for each intercepted message, saving the extracted information
by the Message Processor and later forwarding it to the common log repository where all log data will be
collected and where the logging analysis of the whole GEMBus infrastructure will be performed.

Consider SOAP interceptors as initial step, as SOAP-based services are currently the most common in web
services scenarios. It is worth to explore which the structure is and the information carried in a SOAP message.
A SOAP message is an ordinary XML document containing the following elements:

• Envelope element: identifies the XML document as a SOAP message.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

31

• Header element: contains header information.

• Body element: contains call and response information.

• Fault element: contains errors and status information.

The SOAP header elements are optional and contain application-specific information. These optional SOAP
headers allow extensions such as encryption, security, authentication, billing, correlations, etc. GLOS can
extract useful logging information by analysing these header fields.

Figure 3.15 shows a fictional example of interacting web services, the Infrastructure reservation service. Users
can request and reserve network connectivity (through a web portal) and computing resources at the same time.
This example illustrates the message workflow for a user request. The user requests a network circuit between
two Grid computing centres. The Infrastructure reservation service in turn uses the BoD service to provision
network circuits and the IT resource reservation service to allocate computing resources from each Grid centre.

Figure 3.15: SOAP messages exchanged among web services

As an example, the composite service described above wants to know how the component services are
behaving. By studying and observing their behaviour, it would be able to optimise itself by either changing its
component subservices or by instructing the existing component subservices to improve performance.

GLOS must fulfil the logging and monitoring functionality that the composite service needs to optimise its
performance as a whole complex service, because it is actually seen as a single service by the end user. It is
necessary to analyse end-to-end Quality of Service (QoS) and understanding bottlenecks or causes for failure
of the service requests. Table 3.1 describes the types of message transactions between services to extract
information.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

32

Requirement Type Requirement Description Metrics Considered

Service Frequency of Use

Service use frequency.

Periods of greater service use.

Periods of greater data traffic.

Number of SOAP messages
addressed to that service.

SOAP messages size.

SOAP messages date/time.

Service Availability Time percentage in which the
service is available.

Number of non-replied SOAP
messages divided by the number
of replied to SOAP messages.

Service Reliability Percentage of well succeeded
requests.

Number of failed SOAP requests
divided by the number of well
succeeded SOAP requests

Security
Percentage of secure services.

Percentage of non secure services.

SOAP messages that carry
security tokens divided by the
number of SOAP messages
without security messages.

Service Response Time Time spend by the service to
provide a reply to a given request.

SOAP message arrival time.

SOAP message reply time.

Network Latency Time
Time spend by the message
transiting over the network to reach
the destination.

SOAP message sending time.

SOAP message arrival time.

Table 3.1: Message transactions between services

In the Infrastructure reservation service example, the administrator has information to analyse some service
performance parameters. For example, he will be able to extract statistics about service usage (frequency of
use). Moreover, the administrator can determine whether or not the service has been available and reliable. If it
has not, he can detect which sub-service is not performing well and take appropriate actions. Furthermore, the
administrator can monitor if the service response times are within the normal values and, if not, take action
such as hardware upgrade (the service may be overloaded and require a hardware upgrade). Finally, the
system administrator can detect a poor service performance caused by an external factor such as high network
latency.

To achieve this performance, GLOS takes advantage of the addressing and routing mechanisms provided by
GMI through WS-Addressing message addressing properties and EPR. In particular, GLOS takes advantage of
the following:

• Message destination: URI.

• Source endpoint: the endpoint of the service that dispatched this message (EPR)

• Reply endpoint: the endpoint to which reply messages should be dispatched (EPR).

• Fault endpoint: the endpoint to which fault messages should be dispatched (EPR).

• Action: an action value indicating the semantics of the message (may assist with routing the message)
URI.

• Unique message ID: URI.

• Relationship to previous messages: A pair of URIs.

The GEMBus Core

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

33

Using WS-Addressing it is possible to uniquely identify a message (Unique message ID), and identify who sent
the message and its destination (Source endpoint and Message destination). It is possible to correlate
message transactions and identify service workflows using the fields Unique message ID and Relationship.
Correlating message transactions and identifying service workflows is a key capability for GLOS. Due to the
amount of transactions going through GEMBus, it is required to identify to which service transaction each
message belongs in order to do further log analysis. For each message, it is proposed to extract the following
data and create a log record with the following fields:

[Timestamp] [Message ID] [Source EPR] [Destination EPR]
[Relationship to other messages] [Action] [Message size]
[Fault SOAP code (if any)] [SOAP body]

The log records will be saved using RDF ontology with the data fields described above. They will be sent to the
common log repository to have a single point from which to compute logging analysis and control of GEMBus
performance.

RDF is an emerging language and there are several reasons for selecting RDF ontology as a data model for
GLOS:

• RDF is based on open source, languages and standards.

• A choice of a variety of serialisations and notations, including RDF/XML, N3, RDFa, Turtle, N-triples,

• Common framework and vocabulary for representing data structures and schema.

• Schema based on RDF can be extended and grown incrementally without impacting the existing data
store.

• Because of conceptual closeness to the relational data model, it is possible to represent RDF in a
relational database and vice versa. RDF has the ability to take advantage of historical RDBMs and SQL
query optimisations.

• Use of a set-based semantics and queries. Via its SPARQL query language, easy mechanisms to drive
faceted search and other browsing and viewing tools.

Note that RDF provides an easy way to extend the GLOS logging data model if necessary. Furthermore, it
provides many advantages in the logging storage, where advanced queries provide a powerful tool to automate
logging analysis.

3.5.1 Security and Privacy Considerations

The sort of records that GLOS will be able to collect, and that potentially could comprise the activity of all
GEMBus-enabled services, can raise serious (personal and organisational) privacy concerns if a single
centralised log repository is considered for the whole GEMBus infrastructure. It is important to highlight that the
architecture does not require this unique repository, and that GLOS local deployments can decide to route
logging messages to different repositories according to local policies and component and composite service
requirements.

Service Lifecycle Model

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

34

4 Service Lifecycle Model

Once the general GEMBus architecture has been discussed and the GEMBus core introduced, consider the
lifecycle model that GEMBus will support for services deployed within it. Composable service lifecycle
management is an important component of the Composable Service Architecture (CSA) proposed in section 2.
It is key to the underlying design and operation of GEMBus. It is the basis for the CSA Service Delivery
Framework (SDF), supported by the necessary Infrastructure Supporting Services (ISS) that provides
consistent context management to the deployed services during their whole lifecycle.

Section 4.1 describes the CSA SDF. This is based on the TeleManagement Forum SDF [TMF-SDF] and
extends it with additional stages that ensure consistent services context management during the whole lifecycle
of the provisioned services. Figure 4.1 illustrates the main stages for service provisioning and delivery:

• Service Request stage, including SLA negotiation: The SLA can describe QoS and security
requirements of the service along with information that facilitates authentication of service requests from
users. This stage also includes the generation of a Global Reservation ID (GRI) that will serve as a
provisioning session identifier and will bind all other stages and the related security context.

• Composition/Reservation: This stage comprises the Reservation Session Binding with GRI and
provides support for complex reservation process in a potentially multi-domain environment. This stage
may require access control and SLA/policy enforcement.

• Deployment: This stage begins after all component resources have been reserved and includes
distribution of the common composed service context (including security context) and binding the
reserved resources or services to the GRI as a common provisioning session ID. This stage can include
an optional Registration and Synchronisation stage, specifically targeting possible scenarios in which
the provisioned services are migrated or upgraded. In a simple case, the Registration stage binds the
local resource or hosting platform run-time process ID to the GRI as a provisioning session ID.

• Operation: This stage is the main operational stage of the provisioned on demand composable
services. Monitoring is an important functionality of this stage to ensure service availability and secure
operation, including SLA enforcement.

• Decommissioning: This stage ensures that all sessions are terminated, data are cleaned up and
session security context is recycled. It can also provide information to or initiate services usage
accounting.

Service Lifecycle Model

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

35

Service Request/
SLA Negotiation

Composition/
Reservation

Deployment

Operation
(Monitoring)

Decommissioning

Registr&Synchro

Recovery/
Migration

Re-Compo
sition

Service
Lifecycle
Metadata
Service
(SL MD)

Provisiong
Session
Managnt

Figure 4.1: Workflow for on-demand provisioning of composable services

Two additional stages can be initiated from the Operation stage and/or based on the running composed service
or component services state, such as their availability or failure:

• Re-composition or Upgrade: This stage allows incremental infrastructure changes.

• Recovery/Migration: This stage can be initiated by the consumer and the provider. This process can
use service lifecycle metadata to initiate a full or partial resource re-synchronisation. It may also require
re-composition.

4.1 Infrastructure Services to Support CSA SDF

The implementation of the proposed SDF requires a number of special Infrastructure Support Services (ISS)
able to consistently support lifecycle management as part of the CSA middleware. The most basic one is the
Registry mechanism already described as part of the GEMBus core, providing service registration and
discovery. Beyond this, two additional services are required to support the lifecycle model:

Service Lifecycle Model

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

36

• Service Lifecycle Metadata Repository: This keeps the service metadata during the whole service
lifecycle, including service properties, service configuration information and service state.

• Service and Resource Monitor: This provides information about services and resources state and
usage.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

37

5 Integration Patterns

One of the declared objectives of GEMBus is to ease the integration of existing service platforms both in the
GÉANT infrastructures and in the GÉANT user communities. The goal is to:

• Ease gaining access to those services by other user communities worldwide.

• Allow other services to leverage on and/or be composed with them.

• Provide homogenous mechanisms to make these services evolve.

• Simplify the integration with similar or related platforms in other spheres (commercial, governmental,
etc.).

Following the experiments the GEMBus team executed to define the architecture introduced in this document,
three different patterns for service integration have emerged. This section presents the main principles on
which these integration patterns are based. It analyses their application to certain flagship GÉANT services and
provides recommendations for future service integrations.

The service integration process in many cases can be complicated, time-consuming and cause other problems
due to the requirement to integrate many types of services. Some of them provide interfaces based on
standards but many others provide rather specific interfaces. Moreover many service frameworks that do not
provide any service-oriented interfaces are developed in various programming languages (e.g. C++, Java,
Python, Ruby, etc.). The ESB framework simplifies the integration process providing many standard-based
modules ready to be used for binding existing services to the bus. Integration of the other interface types can
be implemented as adaptors on which the GEMBus team is working. At the time of writing, the GEMBus
framework considers three types of adaptors:

• Single Adaptor: One adaptor of many integrated services.

• Per-service Adaptors: Each service is integrated by separate adaptor.

• Publish/Subscribe: Services publish data. They are classified and can be received by subscribers.

5.1 Single Adaptor: AutoBAHN Case

The single adaptor pattern is the case where one adaptor is used for many integrated services. This pattern
supports the interaction between a service consumer on a local ESB and a service provider on a foreign ESB.
The logic to translate the ESB behaviours (for example security, assured delivery, logging, etc.) to support that
interaction is built into the single adaptor, then bound to the adaptor at design time.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

38

AutoBAHN integration follows the single adaptor pattern. The AutoBAHN (Automated Bandwidth Allocation
across Heterogeneous Networks) [AUTOBAHN] is an inter-domain network reservation system capable of
setting up on-demand dedicated circuits across heterogeneous domains irrespective of the underlying
technologies. It is developed in GÉANT2 and provides communication through web services and/or a graphic
user interface (UI).

The current prototype implementation of the AutoBAHN integration follows the single adaptor integration
pattern. This pattern is used because the AutoBAHN service provides a single interface towards the user and
does not require any extra mechanisms or mappings for the methods of the interface to be called. The
integration is achieved via the GEMBus platform through the creation of an adaptor that enables the
communication of the AutoBAHN network reservation system with the user, on one hand and with other
composable services, on the other, e.g. monitoring services, bandwidth allocation and network topology
services.

Figure 5.1 illustrates the AutoBAHN Client adaptor.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

39

Figure 5.1: Integration of network reservation systems with other composable services

The architecture schema, with the modules required to provide the AutoBAHN integration into GEMBus, is
described as follows:

Client Interface: This is the front-end to the client that receives the user request parameters, handles the
reservation request and/or cancellation, and/or modification, and forwards the request to the AutoBAHN Client
Adaptor.

AutoBAHN Client Adaptor: This adaptor adopts the Single Adaptor pattern. It communicates with the Client
Interface and handles the user request for the path reservation/cancellation/modification. It receives the
network reservation parameters, such as source IP, destination IP, reservation time period and network
guarantees (such as bandwidth, delay, etc.) and forwards them to GEMBus, which will then provide them to
the AutoBAHN Service Adaptor.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

40

AutoBAHN Service Adaptor: This adaptor is responsible for deploying the AutoBAHN service inside the
GEMBus platform and publishing it as a composable service available for others to see and call it. This adaptor
also acquires the reservation parameters from the GEMBus and calls the AutoBAHN reservation system with
the specific user request.

Through the AutoBAHN Service Adaptor the AutoBAHN reservation service becomes a composable service
inside an ESB registry. It can be orchestrated or composed with other services, such as with a monitoring
service in which it can forward the reservation parameters to monitor the network path.

The Single Adaptor pattern used in the GEMBus case provides a translation of the AutoBAHN service interface
into a compatible user interface and, by transforming user data into appropriate forms, translates the user calls
into calls to the original interface. This pattern is efficient and can be effectively followed in cases where future
services have a single interface and their integration into GEMBus can be easily achieved by mapping this
interface into a different one, user-friendly and with a similar functionality.

5.2 Per-Service Adaptors: The perfSONAR Case

This section describes the concept of the integration pattern based on per-service adaptors, as well as its
advantages and disadvantages. It proposes a method to classify the per-service integration pattern.

The concept behind this integration pattern assumes that each service is implemented as a separate adaptor.
This solution provides several advantages, such as easy management of services. Since the ESB framework
manages the lifecycle of the adaptors the process related to deployment as well as stopping and restarting
each of the services will be easy to perform. Having each of the services in separate adaptors also provides
easy access restriction, keeping statistics of the service usage or logging all service events. This pattern also
offers an easy way for clients to access the services. The use of ESB binding elements makes it possible to put
out many types of ready-to-use endpoints (such as SOAP or REST protocols) for clients, as well as easy
reconfiguring.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

41

Figure 5.2: Concept of the per-service adaptors integration pattern

5.2.1 Integration Methods

During the experiments with this GEMBus integration pattern, three different integration methods have been
identified, depending on the type of adaptors that can be implemented:

• Adaptors using the current provided services.

• Adaptors based on the service source code.

• Adaptors based on newly developed services.

The first type of integration method uses the current provided services. It is based on an evolutionary, rather
than a revolutionary, approach. It is important to note that (in this method) the communication with the current
running services cannot be implemented in all cases on standard protocols. In this case, an additional adaptor
is necessary (known here as an interceptor) which translates between the current running service and the ESB
internal protocol. Figure 5.3 shows the structure of adaptors based on this method.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

42

Figure 5.3: Per-service adaptors based on current running services

The second type of integration method uses the source code of the service to provide it through the ESB. In
this case, there must be some requirements defined for the adaptor to be able to register with the GEMBus and
provide services for clients. Figure 5.4 shows the adaptors based on this method.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

43

Figure 5.4: Per-service adaptors based on current service source code

The third integration method requires developing a new service from scratch. This method can produce the
most optimised adaptors and service integration with GEMBus. In some cases, this method may be better than
the second method. Figure 5.5 shows the adaptors based on this method.

Figure 5.5: Per-service based on newly developed services

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

44

5.2.2 Prototype

The current prototype used to experiment with the integration of the GÉANT perfSONAR services
(Performance Service Oriented Network monitoring architecture) [PERFSONAR]. The integration of
perfSONAR is based on the per-service integration pattern because of the perfSONAR software architecture,
implementing it by means of adaptors using the current provided services. At the time of writing, the services
already integrated with GEMBus are the perfSONAR Command Line Measurement Point (CLMP) and RRD
Measurement Archive (RRDMA) services. Figure 5.6 shows conception (left) and prototype (right) of the
integration GÉANT perfSONAR services within GEMBus.

Figure 5.6: perfSONAR integration in GEMBus using a per-service adaptor pattern

5.3 Publish/Subscribe: The eduroam Case

eduroam® [EDUROAM] is a well-known and relatively mature service run within GN3 SA3 T2. Network access
provided by eduroam is based on RADIUS authentication passing through the eduroam infrastructure. In the
eduroam model, authentication is equivalent to authorisation to use the service. In GN2, it was planned to
investigate how the bare authentication process could be extended with the use of additional SAML channels
(the DAMe project [DAME]). This is currently being pursued within the GEMBus scenario, exploring the

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

45

additional ideas discussed below. Splitting the process in well-defined blocks guarantees reusability of the code
and concepts.

eduroam places much emphasis on users’ privacy by allowing users to hide their true electronic identity within
the visited network. Work done in GN3 JRA3 T1 introduces a permanent opaque user identity that can identify
the user within a given visited site. The main use case of this extension is to enable a speedy reaction in cases
of network incidents. This approach also opens a new possibility to add functionality for certain eduroam
visitors, without a need to create local access accounts for them. The identifier introduced in eduroam is carried
as the Chargeable-User-Identity (CUI) RADIUS attribute. To generate different identifiers for different eduroam
service providers, it is expected that these service providers will send a domain that identifies them in the
Operator-Name RADIUS attribute.

The main strength of eduroam is its simplicity, which leads to quality of the service and its wide adoption. When
designing any extensions of eduroam, care must be taken not to introduce any negative effects. New interfaces
between eduroam and GEMBus should be lightweight and non-blocking. Great care must be exercised to
preserve the privacy profile of eduroam.

Native eduroam-generated events are limited to successful or unsuccessful authentication and can be
published by home institution, visited institution or a relaying party (eduroam proxy). Additional messages,
generated to GEMBus by supporting systems, could include authorisation attributes. By adding a new
information exchange channel one can also add an equivalent to a forced log-off message, something that the
RADIUS protocol does not provide. All messages should contain the value of the CUI.

Potential subscribers to eduroam login events can be:

• Local IdP services used for storing local statistics and for keeping information about current users;

• Global statistics collectors and analyzers.

eduroam service providers can consume authorisation messages to offer additional services.

Service providers can use log-off messages to immediately terminate the user’s association to the network.

eduroam involves a number of server implementations. The simplest method with which to interface them with
an ESB is to provide a syslog listener. This collects information sent by the servers and republishes it to
GEMBus.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

46

Figure 5.7: eduroam syslog in a publish-subscribe pattern

5.3.1 Case Study

5.3.1.1 Case 1: Enabling a printing service for certain visiting users

When an academic guest visits a university for an extended period of time, it may be desirable to provide
him/her with some additional local services, such as access to local printers. There may be a number of
methods to do this locally

• Assigning the user to a privileged VLAN.

• Opening access on a local firewall.

• Sending a message to a local ESB based printing service.

Regardless of the method selected, access control must recognise and authorise the user. The printing service
is used here simply as an example. Many other local services can be enabled in a similar way.

The general idea in this scenario is based on the fact that a visited institution is able to correlate the user’s
machine hardware address, the user’s CUI and the user’s machine IP address attribute value. Correlation
between the first two happens during authentication and can be obtained from the RADIUS server, while the IP
assignment process correlates the latter two. A well-managed network should block any attempt of an
unauthorised IP change. On the other hand, a MAC address change will result in re-authentication that will
renew the MAC-CUI and IP-MAC associations. Access rights to the service attached to a given CUI value may
be derived automatically from the user’s IP or MAC address.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

47

Figure 5.8: Enabling access to a local resource relying on eduroam

Two scenarios are proposed for how the authorisation may be done.

1. Authorisation decision passed from the home institution of the user: Upon authentication, the
user’s IdP may look up an authorisation table and send a GEMBus message containing additional
authorisation attributes. The addressee of the message is looked up in the GEMBus registry, based on
the value of the Operator-Name attribute contained in the Access-Request RADIUS message. This
solution requires that some additional trust relationship be established between the visited institution
and user’s home institution. It also requires that both sides have access to GEMBus.

2. Authorisation decision made within the visited network: As has been observed earlier, once a
given CUI has been assigned some additional rights, the rest of the access mechanism can happen
automatically. Since the actual CUI value is not known to the user, the mechanism of coupling the user
and CUI is crucial. The following proof-of-concept solution is proposed:

• The visiting user, after having authenticated to eduroam, accesses a local registration web page and
asks for permission to use the service, providing an e-mail address.

• The web server sends an email to the user’s address with either a password or a one-time URL.

• The user accesses the provided confirmation page.

• The WEB server obtains the user’s IP, correlates it to the CUI and saves the CUI-email pair in a local
database.

• Additional domain-specific verification confirms that the user with a given email address is indeed
authorised to use the printing service and the result is recorded in the local authorisation system.

The actual access to the service can be realised in various ways, but a proof-of-concept implementation is
under construction using the ESB approach described above. Tools created in the process will be applied to
other GEMBus interactions in the future.

Integration Patterns

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

48

5.3.1.2 Case 2: Identifying eduroam abuse by the same user logging at several locations in the
same time

This case has been studied in detail and implemented as a proof-of-concept in the experiment described in
detail in Appendix A. The requirement is that in cases when it is observed that the same user appears at the
same time in a number of locations, the user should be disconnected from eduroam either in all locations or all
except the most recent ones. Appendix A shows how this result can be achieved by sending GEMbus
messages between eduroam parties.

5.3.1.3 Case 3: Enabling eduroam statistics

GN3 JRA3 T1 and GN3 SA3 T2 have provided a new statistic tool: F-Ticks [FTICKS]. The concept is based on
sending syslog messages from authenticating (or intermediate proxy) server to a central collection point, where
they get anonymised and merged. GEMBus can serve as an enabler for additional analysis tools if F-Ticks
messages are published and can be subscribed. There are various levels of data anonymisation based on trust
relationship between the publisher and a subscriber. An initial service will be built by setting up a syslog
publisher and listening to messages forwarded from the F-Ticks service.

Accessing GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

49

6 Accessing GEMBus

GEMBus is conceived as an infrastructural service. It intends to be able to incorporate services and allow
building more complex ones by composition, in addition to providing any component or application deployed in
the GÉANT ecosystem with access to the services it integrates, without necessarily requesting it to be
accessible through the GEMBus federated SOA.

This section describes common approaches suitable to be employed by applications (or any service element)
willing to take advantage of GEMBus services. These were a consequence of experiments carried out by the
GEMBus team to define and validate the architecture, as well as some results (most notably, the AC
demonstrator; see section C.1).

Figure 6.1: Accessing GEMBus through direct ESB integration

Figure 6.1 illustrates accessing GEMBus through ESB integration. The first mechanism is the most direct one
and corresponds to a fully integrated element in an ESB instance participating in the GEMBus federated
infrastructure. The application component is able to access transparently any GEMBus service located in the
same ESB instance or in a separate one. The GEMBus core adaptors and binding components provide the
necessary mechanisms to make this interaction seamless, so developers can concentrate in the element
business logic and leave particular aspects related to service access (security, routing, data adaptation, etc.) to

Accessing GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

50

deployment options established according to the particular element usage and general ESB configuration
defaults provided by the infrastructure administrators.

Figure 6.2: Accessing GEMBus at the API level within an ESB

There may be many other cases where a finer control on the usage of GEMBus core services is required or in
which the developers want to specifically apply only a part of those services in their element. Since GEMBus
core services are integrated with the ESB supporting platform, they can be accessed by directly invoking its API.
They can be viewed from the user element as part of the web services framework on which the ESB is built (for
example, Apache Spring in the current FUSE ESB framework).

In fact, any mix of this approach is possible. An element could rely on the participating ESB for message
routing (as an example) and use the GEMBus security service by direct API calls. Note that this flexibility
comes at the price of a higher dependency on the particular implementation details and required libraries used
for a given GEMBus core service, so the evolution of the element is not only driven by the business logic
requirements.

Accessing GEMBus

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

51

Figure 6.3: Accessing GEMBus from outside an ESB

GEMBus services can be accessed by other elements not directly integrated in any participating ESB, as long
as the service platform on which the user element runs incorporates the necessary API to access GEMBus
services (or alternatively they are incorporated into the service bundle), and the GEMBus Registry is used to
look up the necessary data for locating and accessing the requested services. The first condition is similar to
that which was described for the previous approach, while the second requires the implementation of at least
one of the access methods provided the Registry, either to make real-time queries or periodical updates.

This latter approach covers several interesting use cases, allowing the application of core GEMBus services in
environments such as access portals. GEMBus acts as a bridge between base GÉANT services and the
mechanisms providing access to them to the general user community.

GEMBus in Relation to Other Architectures

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

52

7 GEMBus in Relation to Other Architectures

This section describes the overall CSA, which was introduced in section 2, together with its practical realisation
through GEMBus in the framework of related standards (particularly those related to the Open Service
Environment (OSE) concepts, as defined by ITU-T Next Generation Network (NGN) [NGN], the IPSphere
Framework [IPSPHERE] and OGSA [OGSA]. Finally, the alignment of the proposed GEMBus architecture to
parallel efforts to formalise business process in GÉANT will be analysed.

7.1 GEMBus in the Context of Standards

The CSA can be described as a framework for implementing the Open Service Environment (OSE) concept, as
defined by ITU-T Next Generation Network (NGN), which demonstrates the present trend to use
service-oriented concepts in the modern telecommunication industry.

GEMBus relies on a CSA that adopts the layering approach defined in the Web Services Architecture and
extends it with additional lower and upper layers to reflect use cases specific to Internet and
telecommunications services. Figure 7.1 shows the CSA layers. They are described as follows:

1. Networking Layer. This layer provides the capability to apply technologies typical in distributed
enterprise applications, such as VPNs.

2. Transport Layer. This layer defines functionality specific for service communication such as transport
layer security (using TLS/SSL protocols), assigning service types to specific ports, etc.

3. Messaging Layer. This layer defines functionality related to message handling such as message
routing, message format transformation, etc.

4. Virtualisation Layer. This layer is split into a Logical Abstraction Layer and a Composition Layer. This
layer provides functionality to compose services and support/drive their interaction (e.g. with workflows)
to ensure application interactions.

5. Application Layer. This layer hosts application-related protocols and represents applications, where
the major goal is application related data handling.

Security services are applied at multiple layers to ensure consistent security. Management functions are also
present at all layers and can be seen as the management plane, similar to the NGN reference model.

GEMBus in Relation to Other Architectures

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

53

Figure 7.1: CSA Layering

A number of the recent ITU-T recommendations related to the NGN provide a basis for transport/network and
Information Technology (IT) convergence based on NGN. The NGN concept is introduced by ITU-T as a next
step in creating a global information infrastructure. The NGN reference model, according to ITU-T Y.2011
Recommendation, suggests the separation of the transport network and application services and defines them
as NGN service stratum and NGN transport stratum consisting of a User plane, a Control plane and a
Management plane. Any modern networking environment is characterised by the integration between services
and network infrastructure, increasing use of Internet protocols for inter-service communication, services
digitising and integration with higher-level applications. The ITU-T Recommendations Y.2012 and Y.2201
specify high-level requirements and functional architecture of the NGN Release 1. The described NGN service
architecture proposes a service and network separation principle and defines functional components of the
Transport stratum and Service stratum. The NGN Y.2012 architecture also defines the Application Network
Interface (ANI) that provides an abstraction of the network capabilities and is used as a channel for applications
to access network services and resources.

The NGN convergence service model is defined by ITU-T Recommendation Y.2232 and suggests the major
scenario by means of web services. The NGN OSE defined by ITU-T Recommendation Y.2234 is based on
web services and actually implements basic SOA principles in defining a service integration model. The
definition of the OSE and web services convergence model is targeted to provide a common framework for
both application and provider service developers.

The Y.2234/Y.2201 NGN OSE is required to satisfy such requirements as independence from transport
network providers, independence from manufacturers, location transparency, network transparency and
protocol transparency. The OSE should provide the following capabilities to support effective services
integration and operation:

• Service coordination.

• Interworking with service creation environment.

• Service discovery.

• Service registration.

GEMBus in Relation to Other Architectures

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

54

• Policy enforcement.

• Development support.

Development support suggests that OSE should support the full lifecycle of components, ranging from
installation, configuration, administration, publishing, versioning, maintenance to removal.

In a natural step, another set of ITU-T standards prescribe NGN convergence model based on web services
and require NGN capabilities to support OSE. Web service-enabled NGN transport networks provide a native
environment for integrating applications, services and resources that can be provisioned on demand.

The IPSphere Framework is a framework for abstracting and composing multi-stakeholder telecommunications-
based services both within and between service providers. Service abstraction describes the business and
technical characteristics of a service and its constituent service elements, which are sets of resources offered
by different providers. Service composition identifies and selects elements that satisfy these technical and
business requirements. The IPSphere Service Structuring Stratum provides support for structuring, executing
and assuring these services.

The IPSphere Framework can be viewed as a set of mechanisms needed for any user to obtain a final service
composed of several elements belonging to distinct infrastructure/network providers. The interface in the
highest layer offered by the IPSphere Framework is used for provisioning complex services by means of
orchestrating/selecting simple elements.

GEMBus infrastructure can be mapped easily with the IPSphere Framework. As GEMBus is based on SOA, its
services are characterised by having well-defined service endpoints, which allows loose coupling between them.
Furthermore, GEMBus relies on its core services for registering, orchestrating and composing complex services
according researchers needs.

It must be taken into account that IPSphere is a framework under strong evolution and enhancement, and
because of this, no reference API has been implemented. Currently, TMForum is working on the second
specification release.

Based on the SOA, the Grid SOA was developed because the Grid Architects decided that there were enough
requirements in their services-oriented architecture that were not met by the Service Oriented standards. The
Open Grid Forum (OGF) was formed to standardise a services-based infrastructure for the Grid environments,
named OGSA (Open Grid Services Architecture). OGSA represents an evolution towards a Grid system
architecture based on web services concepts and technologies by introducing semantics and capabilities to
web services, statefulness, stateful interactions, transient instances, lifetime management, introspection and
notification of state changes at the resources.

Generally OGSA provides state-aware, continuous availability for service applications, data and processing
logic. It is based on architecture that combines horizontally scalable, database-independent, middle-tier data
caching with intelligent parallelisation and an affinity of business logic with cache data. This enables newer,
simpler and more-efficient models for highly scalable service-oriented applications that can take full advantage
of service virtualisation and event-driven architectures that exist in grid environments. It provides uniform
mechanisms to discover and query resources, while it simplifies the administration and management of
heterogeneous systems and resources by offering common management and virtualisation capabilities.

GEMBus in Relation to Other Architectures

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

55

CSA conforms to the existing Grid standards, especially OGSA, and is suitable to integrate heterogeneous
systems by incorporating both OGSA services among them and extending OGSA infrastructures with additional
services. This is achieved through the core GEMBus services described earlier for security, registration,
accounting and composition, and to the integration patterns described by supporting a service lifecycle model
for dynamic provisioning.

7.2 GEMBus in the Context of GÉANT Business Architectures

JRA2 T1 has made a thorough analysis of multi-domain business processes in a peer-to-peer relationship for
interactions in the GÉANT ecosystem [DJ2.1.1]. Figure 7.2 shows the operations corresponding to the
decomposition of GÉANT-NREN business processes in both NREN to NREN interactions and NREN to
GÉANT interactions.

Figure 7.2: Business process decomposition, NREN-NREN, NREN-GÉANT (source: JRA2 T1)

GEMBus in Relation to Other Architectures

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

56

This analysis places particular emphasis on the Multi-domain Service Interaction business processes as unique
processes within the GÉANT-NREN environment, missing in current standards but needed for the
establishment of multi-domain services in a non-commercial (heterarchical or peer) environment. It is obvious
that GEMBus can play a key role in these processes, enabling a direct implementation of the business logic by
providing support for core services: service location and access, security, composition and monitoring.
Furthermore, the rest of the processes could be implemented by component and composite services, or even
by dedicated buses federated through GEMBus. GÉANT operations could be constructed by multi-domain
composition.

GMI Addressing and Routing Mechanisms

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

57

Appendix A GMI Addressing and Routing
Mechanisms

Routing in GEMBus takes place at the messaging layer and uses services identification both as an EPR for
SOAP messages and as a URL (used in RESTful services). The following sections describe the conventions
that define names and identifiers for the GEMBus EPRs, entities, elements, attributes and properties.

A.1 Namespaces

GEMBus uses dedicated URI namespaces for expressing names, identifiers and properties of the GEMBus
entities, elements and attributes. In the appropriate cases the same naming scheme can be applied to
enumerated values and attributes.

GEMBus naming allows the use of two types of namespace expressions: URN (Uniform Resource Name) and
URI (Uniform Resource Identifier). They are designed to support direct mapping between them.

The URN namespace format is defined as a branch of the GÉANT namespace urn:geant specified in
RFC4926 and uses the following prefix:

urn:geant:gembus

The URL namespace format uses the prefix http://geant.net/namespace/gembus/.

Optionally, URL namespace will be resolved into GÉANT website URLs containing GEMBus schema definitions.

The GEMBus namespace allows the definition of lower level namespace branches for specific groups of
services or attributes. The current list of top-level namespace branches includes:

• Protocol: for elements and attributes in any protocol defined or extended by GEMBus.

• Security: for elements and attributes related to the GEMBus security architecture and services.

• Service: for elements and attributes related to the services included in GEMBus.

Additional top-level branches will be added as necessary.

GMI Addressing and Routing Mechanisms

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

58

A list of all assigned namespace branches shall be maintained within a special metadata file that can be directly
used by GEMBus components. GEMBus related SOAP message header elements shall use the default
namespace prefix gembus. XML schemas defined for other GEMBus components (e.g. GEMBus protocol,
metadata, etc.) shall use namespace prefixes constructed in the following way:

gembus{branch}

Table A.1 provides some initial namespace prefix definitions.

Prefix XML Namespace Comment

gembus urn:geant:gembus This is the default prefix

gembusp urn:geant:gembus:protocol GEMBus message level protocol

gembussec urn:geant:gembus:security Security related elements and attributes

Table A.1: Namespace prefix definitions

A.2 Endpoint References

GEMBus defines its own endpoint reference format and schema in accordance with the WS-Addressing
endpoint reference definition, which provides support for the following scenarios, as stated in [WS-Addressing]:

• Dynamic generation and customisation of service endpoint descriptions.

• Identification and description of specific service instances that are created as the result of stateful
interactions.

• Flexible and dynamic exchange of endpoint information in tightly coupled environments where
communicating parties share a set of common assumptions about specific policies or protocols that are
used during the interaction.

According to the WS-Addressing specification, EPRs can be used to complement WSDL <service/>
elements to allow easy exchange and update service endpoint information including dynamic policy assignment
and dynamic configuration information.

WS-Addressing defines the EPR element in the following form:

<wsa:EndpointReference>

 <wsa:Address>xs:anyURI</wsa:Address>

 <wsa:ReferenceProperties>... </wsa:ReferenceProperties> ?

 <wsa:ReferenceParameters>... </wsa:ReferenceParameters> ?

 <wsa:PortType>xs:Qname</wsa:PortType> ?

 <wsa:ServiceName PortName=”xs:NCName”?>xs:Qname</wsa:ServiceName> ?

 <wsp:Policy> ... </wsp:Policy>*

</wsa:EndpointReference>

GMI Addressing and Routing Mechanisms

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

59

GEMBus EPRs use the top-level elements defined by the WS-Addressing specification and introduce new
elements down in the hierarchy to support the required GEMBus functionality.
The GEMBus EPR profile conforms to the minimal requirements principle discussed in section 2. It is intended
to allow easy mapping to service addresses expressed in the form of a URL string to provide transparency
between SOAP-based and RESTful services. The following considerations apply to the GEMBus EPR element
definitions:

• The content of the <wsa:ReferenceProperties> element defines configurable parameters of the
composable services that remain constant for the whole service lifecycle period.

• The content of the <wsa:ReferenceParameters> defines variables and session related data that
are subject to change during service operation.

• All GEMBus defined elements and attributes should have a (registered) ID in the form of an FQN (Fully
Qualified Name) under the GEMBus namespace.

• All GEMBus defined elements will use the namespace prefix gembus:service.

• It is a decision of the service developer to include a service name into the element name. However it is
recommended that the element’s FQN uses a namespace branch defined for the service or service type.

Table A.2 and Table A.3 list all currently specified service properties and parameters and are provided primarily
for illustration purposes. Complete lists will emerge with the practical GEMBus implementation and testing.

Property name Element name and
attributes

Property ID (FQN including
namespace)

Comment

DomainID <gembus:DomainID> urn:geant:gembus:servic
e:property:domain-id

Service domain
expressed in DNS
format

ServiceRegistry
Key

<gembus:ServiceRegis
tryKey>

urn:geant:gembus:
service:property:regist
ry-key

Unique key assigned
to registry

AnyProperty <gembus:AnyProperty> urn:geant:gembus:
service:property:proper
ty-any

Just template

Table A.2: Service properties

Parameter name Element name and
attributes

Parameter ID (FQN including
namespace)

Comment

SessionID <gembus:SessionID> urn:geant:gembus:
service:parameter:sessi
on-id

Session type or
relation to other
session(s)

SessionDuration <gembus:
SessionDuration >

urn:geant:gembus:
service:parameter:sessi
on-duration

AnyParameter <gembus:AnyParameter> urn:geant:gembus:
service:parameter:param
eter-any

Just template

Table A.3: Service parameters

GMI Addressing and Routing Mechanisms

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

60

When translating an EPR into a URL string the following conventions are used:

• URL string is composed as follows:
domainName/service/serviceName/{propertyKeyValuePairs}/
{parameterKeyValuePairs}

• propertyKeyValuePairs defines the configurable parameters of the service

• parameterKeyValuePairs defines variables and session related data

• Lists of key-value pairs are separated with semicolon: ;

• No quotation marks are allowed in the URL string.

The following example illustrates the EPR definition for a LanguageAssess service in the CLARIN [CLARIN]
domain:

<wsa:EndpointReference>

 <wsa:Address>http://clarin.geant.net/languageassess</wsa:Address>

 <wsa:ReferenceProperties>

 <gembus:domainID>clarin.geant.net</gembus:domainID>

<gembus:ServiceRegistryKey>K2349456076</gembus:ServiceRegistryKey>

 </wsa:ReferenceProperties>

 <wsa:ReferenceParameters>

 <gembus:sessionID>173945623490764234854</gembus:sessionID>

 <gembus:sessionDuration>8460</gembus:sessionDuration>

 </wsa:ReferenceParameters>

 <wsa:PortType>gembus:LanguageAssessPortType</wsa:PortType>

 <wsa:ServiceName PortName=”LanguageOfText”>

 urn:geant:gembus:clarin:textlanguage</wsa:ServiceName>

</wsa:EndpointReference>

The above example can be mapped to the following URL string:

http://clarin.geant.net/languageassess/textlanguage/
ServiceRegistryKey=K2349456076/
sessionID=173945623490764234854;sessionDuration=8460

When sending a SOAP message to this service, the contents of the message information header blocks should
be similar to:

GMI Addressing and Routing Mechanisms

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

61

<S:Envelope

 xmlns:S=”http://www.w3.org/2003/05/soap-envelope”

 xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”

 xmlns:gembus=”urn:geant:gembus”>

 <S:Header>

 <wsa:MessageID>

 message-id:aaaabbbb-cccc-dddd-eeee-wwwwwwwwwww

 </wsa:MessageID>

 <wsa:RelatesTo>

 message-id:aaaabbbb-cccc-dddd-eeee-ffffffffffff

 </wsa:RelatesTo>

 <wsa:To S:mustUnderstand=”1”>

 http://clarin.geant.net/languageassess

 </wsa:To>

 <wsa:Action>

 http://clarin.geant.net/languageassess/LanguageOfText

 </wsa:Action>

 </S:Header>

 <S:Body>

 Text to be evaluated according to CLARIN schema/format

 </S:Body>

</S:Envelope>

Sample GEMBus Security Token

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

62

Appendix B Sample GEMBus Security Token

A sample SAML assertion following the procedures described in section 3.3.2 for a given consumer with
identifier:

urn:geant:gembus:component:perfsonarclient:NetflowClient10082.

acting on behalf of a user that it is identified by an IdP with identifier:

urn:geant:edugain:be:uninett:idp1

and connecting to a producer identified by:

urn:geant:gembus:component:perfsonarresource:netflow.uninett.no/data

should have a SAML 2.0 content as the one displayed below (some line breaks and indentation have been
added to improve readability):

<?xml version="1.0" encoding="UTF-8"?>

<Assertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:SAML:2.0:assertion

 file:/Users/andreas/Documents/UNINETT/AAISpecs/SAML-2.0/oasis-sstc-saml-
schema-assertion-2.0.xsd"

 Version="2.0" ID="100001" IssueInstant=”2006-12-03T10:00:00Z”>

 <Issuer>

 urn:geant:gembus:component:perfsonarclient:NetflowClient10082"

 </Issuer>

<!-- An audience restriction, that will restrict this security token to be
valid for one single resource only. -->

 <Conditions>

 <AudienceRestriction>

 <Audience>

 urn:geant:gembus:component:perfsonarresource:netflow.uninett.no/data

 </Audience>

 </AudienceRestriction>

 </Conditions>

Sample GEMBus Security Token

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

63

 <Subject>

 <NameID>aksjc7e736452829we8</NameID>

 <SubjectConfirmation Method=”urn:geant:edugain:reference:relayed-trust”>

 <SubjectConfirmationData>

 <Assertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion"

 xmlns:xsi="http://www.w3.org/2006/XMLSchema-instance"

 Version="2.0" ID="_200001" IssueInstant="2006-12-03T10:00:00Z">

 <Issuer>urn:geant:edugain:be:uninett:idp1</Issuer>

<!-- This inner assertion is limited to only be valid for the client performing
the WebSSO authentication. This inner assertion cannot be reused or used at all
by others than the NetflowClient10082 instance. But NetflowClient10082 can use
it as an evidence when used inside an assertion issued by NetflowClient10082
using the relayed-trust confirmationMethod. -->

 <Conditions>

 <AudienceRestriction>

 <Audience>

 urn:geant:gembus:component:perfsonarclient:NetflowClient10082

 </Audience>

 </AudienceRestriction>

 </Conditions>

<!-- This is the inner Subject and authNstatement proving the authentication
itself. These elements and attributes must be identical in the inner and outer
assertion:

 - Assertion/Subject/NameID

 - Assertion/AuthnStatement@AuthenticationMethod

 The inner assertion confirmation Method must be
urn:oasis:names:tc:SAML:1.0:cm:bearer. -->

 <Subject>

 <NameID>aksjc7e736452829we8</NameID>

 <SubjectConfirmation
Method=”urn:oasis:names:tc:SAML:2.0:cm:bearer”/>

 </Subject>

 <AuthnStatement AuthnInstant="2006-12-03T10:00:00Z">

 <AuthnContext>

 <AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:Password

 </AuthnContextClassRef>

 </AuthnContext>

 </AuthnStatement>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<!-- Signed by the IdP (or Home Bridging element) -->

Sample GEMBus Security Token

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

64

 <SignedInfo>

 <CanonicalizationMethod Algorithm="…"/>

 <SignatureMethod Algorithm="…"/>

 <Reference>

 <DigestMethod Algorithm="…"/>

 <DigestValue/>

 </Reference>

 </SignedInfo>

 <SignatureValue/>

 </Signature>

 </Assertion>

 </SubjectConfirmationData>

 </SubjectConfirmation>

 </Subject>

<!-- The authNstatement issued by the client itself -->

 <AuthnStatement AuthnInstant="2006-12-03T10:00:00Z">

 <AuthnContext>

 <AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:Password

 </AuthnContextClassRef>

 </AuthnContext>

 </AuthnStatement>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<!-- Signed by client -->

 <SignedInfo>

 <CanonicalizationMethod Algorithm="…"/>

 <SignatureMethod Algorithm="…"/>

 <Reference>

 <DigestMethod Algorithm=".."/>

 <DigestValue/>

 </Reference>

 </SignedInfo>

 <SignatureValue/>

 </Signature>

</Assertion>

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

65

Appendix C Practical Case: AC Prototype

The architecture depicted in this document is not simply a product of technology reviews or based on previous
experiences on related projects. The team developing GEMBus has performed different experiments to assess
the feasibility of the proposals presented here. This section describes the most elaborate experiment so far,
available as a demonstrator of the GEMBus potential.

The work described here is a step towards achieving the challenge of building self-managed systems, by
providing the necessary Autonomic Computing (AC) services onto GEMBus.

C.1 Autonomic Computing

Autonomic Computing (AC) is an initiative to develop computer systems capable of self-management to
overcome the increasingly complicated task of managing the rapidly growing number of different distributed
computing resources. This task is hampered by the rapidly growing complexity, dynamism and heterogeneity of
computer systems. AC systems are defined as “computing systems that can manage themselves given
high-level objectives from administrators” [AC]. This definition encompasses the key principle behind AC:
administrators (humans) set the rules (policies) by which systems should be guided and those systems are
responsible for enforcing them.

At present, most network management is done using certain methods for monitoring and configuring networked
elements, either virtual or physical equipment. These methods are normally used by specific software that
permits administrators to manage multiple elements from a central place, but almost all tasks need human
intervention. As the number of network elements grows, this task is becoming more and more complicated to
accomplish and a new management paradigm is needed in this field. AC presents a good solution to achieve
the necessary self-management capabilities in modern networks and services.

AC defines four essential tasks:

• Monitor: Collect several state data from the environment.

• Analyse: Examine the collected data to get a more accurate current high-level state of the environment.

• Plan: Decide if the current environment state is valid and, if not, decide what actions should be taken to
reach a valid state.

• Execute: Make the environment elements to perform the corresponding changes to the decisions.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

66

These tasks, together with the knowledge acquired over time, perform the whole lifecycle of the autonomic
management.

Section C.2 describes the basic architecture has a service for each of these tasks:

• Collector.

• Analyzer.

• Decider.

• Changer.

This separation of concerns in different services provides flexibility and scalability to the system. For example,
to support more types of events, a system only needs an enhanced Data Collector. To support more complex
environment analysis, only new analysis expressions are required. The effort required to overcome
infrastructure changes in the environment is rather limited. Moreover, its services are able to live in different
machines and be replicated to scale, attending as many events as needed.

In the particular case of AC, there is the self-management of networked systems and services. It is one of the
key challenges of the Future of Internet (FI) [FI]. Some approaches try to cover the self-management
requirements, such as the Self-organising Management Overlays for Future Internet Services [SOMO]. Other
approaches have emerged from Cloud Computing [VCLOUD] and virtualisation in general [VIRSYSMNG], but
most of them leave management autonomy out of their goals.

Providing AC services in the GEMBus framework can benefit the behaviour of other services and applications
connected to the bus, gaining self-management capabilities, thus overcoming the increasing complexity of
network services as a starting point to meet the challenges of AC [ACOV].

C.2 Basic Architecture

The basic architecture, introduced in section C.1, aims to provide the necessary services and logic for building
autonomic network management solutions that ensure compliance with the policies set by network
administrators throughout the organisation and eventually beyond its boundaries. This architecture was
originally designed to be the foundation of the AC services for the GEMBus framework. Here it is used to
illustrate the applied design principles.

Figure C.1: Basic autonomic network management architecture

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

67

Figure C.1 shows the components involved in the management architecture: the ESB, the main services (Data
Collector, Data Analyser, Decider and Changer) and a managed object that is connected through the binding
components used to adapt its interaction protocols. Each component is described in the following paragraphs.

The ESB works as a communication bus and service container, so it is used to integrate the different
components of the architecture. Current implementations are based on Apache ServiceMix
ESB [SERVICEMIX]. The services are packaged as a Service Assembly and may contain Service Units (SU)
and Binding Components (BC).

Two integration technologies are tightly bound to ESBs: JBI and OSGi. Java Business Integration (JBI) is a
specification for an approach to implementing an SOA. It is built on a message-centered model; a key
component in JBI is the Normalised Message Router (NMR). The NMR delivers messages among services,
which are connected through endpoints. JBI defines two types of services, Binding Component (BC) and
Service Engine (SE). The former component type is intended for connecting external services and adapting
their protocol, while the latter is intended to hold business models and other tools. OSGi is a standard that
provides the definition of a complete component model and lifecycle management tool, acting as component
and service container. It permits a user to remotely install, start, stop, update and uninstall components without
needing to restart the platform. OSGi also manages a registry with the service or services offered by each
component, so component dependencies can be resolved dynamically.

The Managed Object represents an abstract object that is connected to the architecture. It can be any network
equipment (physical or virtual) that can offer an API for reading its configuration and state as well as changing
its configuration. The way a managed object is connected to the bus depends on its capabilities. Certain
managed objects that support the ESB protocol could be directly connected to the bus while others need to be
connected through binding components that adapt certain protocols to the bus protocol. Once a protocol is
provided by a binding component, any managed object which uses that protocol can be connected to the bus.
The architecture described here represents two binding components, one for the protocol used to receive
messages from the managed objects and the other for the protocol used to send messages to the managed
objects. Certain combinations of protocol and managed objects can support the two operations, so only one
binding component is needed to connect the object to the bus.

The architecture uses BCs to permit the interaction with managed objects that cannot be directly connected to
the ESB. On one hand, the Getter is a BC that permits other connected services to retrieve configuration and
state data from managed objects from outside the ESB. On the other hand, the Setter is a BC that permits
other connected services to send commands to managed objects from outside the ESB. There are BCs that
can be used to read and write data so only one is needed to interact with the managed objects it exposes. This
situation makes that the getter and setter binding components mere conceptual artifacts that can live alone or
integrated into other services or components.

The Data Collector is responsible for the data gathering and initial manipulation. It provides the collected data in
a common format to the rest of components, performing the necessary transformations. The data acquired can
be either pulled or pushed, depending on the managed object or its configuration. To achieve these objectives,
this service interacts with the binding components that act as interfaces to the managed objects. Then, the
data-flow between a Managed Object and the Data Collector can be in multiple supported standard protocols,
such as SNMP. Those protocols are adapted by the BCs, but the Collector adapts the data format if required by
other services.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

68

The Data Analyser receives events and reports desired states to other services, such as the Decider. In the
current prototype, it has been built with Esper, a Complex Event Processor (CEP) [ESPER], which is set to
process received XML messages with SNMP entries to detect and report saturated and unsaturated states.

Previous state Current State Action

unsaturated unsaturated no action

unsaturated saturated change route to L2

saturated saturated no action

saturated unsaturated change route to L1

Table C.1: Decider state/action mapping

The Decider service determines the actions to be performed by managed objects for each state change from
system policies. GEMBus previous architecture holds policies in a simple state-action mapping, as Table C.1:
Decider state/action mapping

 shows. This mapping represents two example policies:

• Priority of the main link to send the outgoing traffic.

• Correct saturation using the alternative link.

The Changer service ensures that each managed object receives and performs the actions set by the Decider.
It can use many protocols and message formats, such as SNMP, SSH and HTTP. GEMBus previous
architecture works with SSH protocol for sending messages and shell commands for action definitions.

Figure C.2: Autonomic Computing services within GEMBus

Finally, the architecture is designed to support several managed objects connected to the ESB, so many
managed objects can be involved in the autonomic management process. For example, Figure C.2 depicts how
the same AC services used in the autonomic management architecture can work inside GEMBus. Here, each
network storage service acts as a managed object, and the application is the emergent service that offers the
composed network storage service and urges the AC services to manage them. As a result, the whole storage
system is self-managed.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

69

C.3 Multi-domain Architecture

To get an enhanced architecture for the AC services included in GEMBus, it was necessary to evolve the basic
architecture discussed in section C.2. This included adding new necessary components and changing the
behaviour of some existing services. In addition, as one of GEMBus goals is to permit multiple domains to
cooperate, the task included communicating services from different ESB instances. Some new components are
focused on this task.

Before introducing the new components, it is necessary to discuss the new behaviour of the whole architecture.
The new strategy consists in gathering (collecting) necessary data from designated elements of the
environment to build an environment description set. Then, this information is analysed to find, on the one hand,
new environment records to add to the environment description set or, on the other hand, new values for
existing records. This more complete set is then used to ask the Policy Manager, a new service, for the
correctness of the environment. If the environment state is right, no action is taken. Otherwise, the
Policy Manager will point out to the necessary actions that should be taken to fix any problem found in the
environment. Finally, the corresponding elements are informed with the decision and they will comply with it.

To follow this new strategy, both existing components and their connections have been changed. The most
significant change in the component wiring is in the Collector-Analyser-Decider communications. The Collector
sends the data it receives to the Analyser but now, instead of sending its results directly to the Decider, the
Analyser sends them again to the Collector. The new steps in the data-flow are as follows:

1. The Collector receives messages describing the environment. The messages can be sent from different
sources and can contain one or more registers. The Collector sends those messages to the Analyser.

2. The Analyser, capable of detecting complex events comprising several messages, receives the
environment information and sends back a new message to the Collector if it detects any new event
related to an additional environment state.

3. The Collector receives new messages from the Analyser and updates its environment description set.

4. The Collector, for each received message, composes a new message with the environment description
set and sends it to the Decider. It is desirable that, after a period of time without receiving any message,
the Collector sends a reminder to the Decider, again with the environment description set.

5. The Decider asks the Policy Manager for the correctness of the environment it received. With the result
obtained from the Policy Manager and the environment description set received from the Collector, it
composes a new message and sends it to the Changer.

6. The Changer communicates the actions (obligations) determined by the Policy Manager to the
elements that should perform them.

Other new components and services are added to the architecture to support and promote AC services
federation. They are divided into two groups: local (passive) components and remote (active) components.
These compose the global new architecture, but they are kept conceptually separated to maintain their different
roles. These two groups are described as follows:

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

70

C.3.1 Local/Passive Components

Besides adding new components, functionality of the existing components has been slightly changed to meet
this new data-flow. This section describes the structure and definition of the main elements of the new
architecture. These main elements are meant to live locally, near the other services and components used to
build the emergent system. They are labelled local (passive) components because they do not act by
themselves. They are only responsible for information retrieval and processing. They do not perform actions.

Figure C.3: Enhanced architecture (Autonomic Computing services)

Figure C.3 shows the new architecture which depicts both new components and the components inherited from
the old architecture described in the previously. Although their behaviour has been slightly changed, the main
services remain in the new architecture. A Policy Manager has been added to the main services, which include
Collector, Analyser, Decider, Policy Manager and Changer. The other components shown in Figure C.3 are
included for interfacing with other elements, such as Policy Manager WS Provider, Message Input WS
Consumer and Remote Control WS Provider, as well as helper services, such as Collector Timer. The
behaviour of each component is described as follows:

C.3.1.1 Enterprise Service Bus

This component did not change its behaviour because it is only the service container and the communication
bus. It hosts the JBI-based NMR that is used to deliver messages among components. In the new architecture
Apache ServiceMix ESB 3.0 to FUSE ESB 4.2 was changed. Although it is based on Apache ServiceMix 4.0, it
integrates many other technologies and standards. It remains an open-source solution and is supported by a
private corporation and fulfils most of the needs of many interested organisations.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

71

C.3.1.2 Collector

This component now has more functionality than in the previous architecture. It still receives information from
the different elements of the environment, which is then sent to the Analyser. As stated previously, it now builds
an environment description set that is completed with messages sent by the Analyser and sends it to the
Decider. Moreover, it can receive messages from the Collector Timer that urge it to build a new message with
the environment description set and send it to the Decider. The Collector is built in a generic manner, and it can
handle three types of messages. The first type is the raw state message that is usually received through the
Message Input WS Consumer, coming from outside the ESB. The second message type is an environment
description message that contains concrete environment description registers, which it must include in its
environment description set, overwriting the existing ones if their key/name matches. Finally, the Collector can
handle the messages sent by the Collector Timer that prompt it to resend the environment state message to the
Decider.

C.3.1.3 Collector Timer

This component is built with the Quartz Service Engine included in FUSE ESB to send periodic messages to
the Collector.

C.3.1.4 Analyser

The functionality of this component is almost the same as it was in the previous architecture definition, keeping
its Esper-based CEP. It receives raw state entries and uses its CEP to find complex events. If they match the
defined statements, it generates a new environment message with the result of the analysis and sends it to the
Collector.

C.3.1.5 Decider

This component has completely changed its behaviour. It was a basic proof-of-concept in the previous
architecture, and as such it only had a state-action map to decide what to do in some situations. Now the
Decider gets the environment description set and builds a request message to ask the Policy Manager about
the suitability of the environment. The Policy Manager, depending on the policies previously stored by the
administrators, sends a Permit or Deny response, together with obligations if necessary. The contents of this
response are included in a new message with other environment description registers, such as the subject and
destination of the action, which can contain many values. Finally, this message is sent to the Changer.

C.3.1.6 Policy Manager

This component is based on an external web service, which itself is based on XACML [XACML], using the
implementation offered in XACML-Light [XACMLLIGHT]. It is set by administrators using its interface to
manage XACML policies. To interact with this service, the other services use the Policy Manager WS Provider.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

72

C.3.1.7 Policy Manager WS Provider

This component is a binding component that adapts the messages sent through the ESB to the external Policy
Manager web service. This is specifically through the NMR using JBI, so the requests and responses of the WS
are encoded in JBI. The Decider uses it to contact the current Policy Manager.

C.3.1.8 Changer

This component receives the orders sent by the Decider and sends them to the corresponding destinations
indicated in the action-destination field of the order message.

C.3.1.9 Remote Control WS Provider

This component is a BC that converts the JBI messages received through the ESB into SOAP requests. It
receives the messages sent by the Decider and sends them to the correspondent component in the remote
domain. This is one of the key components involved in the federation, together with the next component and
the other (remote) components defined in section C.3.2. This component is connected with the Remote Control
WS Consumer that lives in a remote domain.

C.3.1.10 Message Input WS Consumer

This is the other key component to obtain multi-domain federation of AC services. It is a BC used to receive
external SOAP messages, adapt them to the ESB and send the new messages to the Collector. In the entire
architecture, this component can receive messages from many sources, but there is a remote component to
connect to this one: the Message Input WS Provider.

C.3.2 Remote/Active Components

This section describes the remote (active) services. They do not live in the same place as the other
components. They initiate the management process by sending the environment state messages to the passive
components. They terminate it by performing the commands urged by the other components. These
components are key to obtaining the federation capabilities. These components are responsible for crossing
the domain boundaries and sending messages to remote AC services.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

73

Figure C.4: Remote Autonomic Computing services

Figure C.4 shows the remote components. It shows Message Input WS Provider and Remote Control WS
Consumer that are used to interact with the outside. It also shows Message Issuer and Command Performer,
providing the actual functionality. Sections C.3.2.1 through C.3.2.4 describe each of these components.

C.3.2.1 Message Issuer

This component generates environment state messages and sends them to the local domain through the
Message Input WS Provider. This component may be incarnated by many components and services, so it is
desirable for it to be located near the information source, thereby reducing the delay between the information
generation and the delivery of its environment state message.

C.3.2.2 Message Input WS Provider

This component uses a SOAP BC and is connected with the Message Input WS Consumer that is located in
the local domain. This component is mainly used by the Message Issuer.

C.3.2.3 Remote Control WS Consumer

This component uses a SOAP BC to receive the orders urged by the local domain services. It is connected with
the Command Performer, so it adapts SOAP messages to JBI for sending them to the Command Performer.

C.3.2.4 Command Performer

This component receives orders and performs them. Many components and services may incarnate the role of
this one, but it is either a conceptual or a concrete element. When received orders involve several elements,
this component should be instantiated alone and be instructed to route the orders to their destination.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

74

C.4 Adding Self-management Capabilities to eduroam Services

This section describes how AC services can be connected with other services to build a self-managed system
or add self-management capabilities to an existing system, using eduroam as an example. As eduroam is a
multi-domain service, it can benefit from AC services to achieve cross-domain autonomic management,
becoming a self-managed system. It is proposed to instruct the local AC services of an organisation to detect if
the same user is connected in two or more remote organisations and, if so, to send disconnection messages to
the remote AC services of the organisations on which that user is connected.

Figure C.5: Network environment

Figure C.5 shows the operating network environment for the self-managed system described here. It depicts
some different domains involved in eduroam. The local domain (UM) is the owner of the many roaming users
connected in the remote domains (UNI 1, UNI 2, UNI 3 and UNI 4). All domains are connected through the
GÉANT network.

In this scenario, the AC services deployed in the remote domains report that UM users are connected to their
infrastructure. The local AC services receive and process the information to send back orders if necessary. This
behaviour is achieved by instructing eduroam services or infrastructure to report the roaming user connection to
their corresponding AC service which is the Message Issuer or directly to the Message Input WS Provider that
is connected to AC services at UM. Moreover, the Command Performer must also be connected with the
eduroam service that controls the user connection so it can perform the possible actions sent by UM AC
services.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

75

Since eduroam services are tied to their own responsibilities, a good point to make the connection between
them and AC services resides in the logging stage. All or maybe some of the logging entries should be
formatted and sent to the proper AC service. This way, AC services can be instructed to keep a log of all
messages it receives and store the sender, date-time and message content. This can be done by building a
logging service and setting proper policies in the Policy Manager to match the desired messages and attach the
logging action as an obligation to the answer.

C.5 Evaluation

This section describes the experiments performed to evaluate the feasibility of the proposed architecture,
showing first the current solution built upon the architecture and how components exchange messages. It then
describes the simulation environment used to test the solution.

To perform the experiments, an implementation was made for each component of the architecture. A solution
was built for local domain and another different solution was built for remote domains. Both local and remote
domain instances are based on the same ESB (FUSE), so the difference is in the services that are installed on
each ESB instance. As described previously, AC services are classified as local and remote services. Local
services are deployed in the local-domain ESB and remote services are deployed in the remote-domain ESBs.

Figure C.6: Component integration and message flow

Figure C.6 presents the message-flow of the different components. It shows four remote domains and a local
domain, but it only shows the internals of remote domains for the first one.

For the purpose of the tests, a Quartz Timer is added to feed the Message Issuer component every five
seconds and instruct the same component to send a predefined message to the Message Input WS Provider,
announcing that a roaming user is connected to its domain. There are three different remote users: Alice will be
connected to remote domain 1; Bob will be connected to remote domain 2 and Chuck will be connected to both
remote domains 3 and 4. In this configuration, with all services running at the same time, the AC services must

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

76

notice that Chuck is connected in more than one place. Starting and stopping the Quartz Timer component of
the different servers simulates different situations, such as the users connecting at different times.

In the local domain, the Analyser is configured to detect that more than one user is connected to different
remote domains. This is done with the following Esper statement:

select ‘

 <set>

 <multiplaces>true</multiplaces>

 </set>

 <merge>

 <action-subject>’ || a.subject || ‘</action-subject>

 <action-destination>’ || a.source || ‘, ‘ || b.source || ‘</action-
destination>

 </merge>

‘ as newRow1

from pattern [

 every a=entry() -> b=entry(

 subject = a.subject,

 source != a.source

) where timer:within(5 min)

] .win:length(10)

It simply detects that an entry is followed by another entry with the same subject but different source. It returns
an XML-code portion that, as described previously, is sent to the Collector. The code instructs the Collector to
set to true a new environment entry, called multiplaces, and to merge the values of action-subject and
action-destination with the same environment entries already added in the past. If the entries to set already
exist, the Collector will replace them with the new ones. If the entries to merge do not exist, the Collector will
add them as new entries. In contrast, if the entries to merge already exist, the Collector will add the new
contents to the old entry.

Also in the local domain, the Policy Manager is set with a policy to make the system react when the Analyser
reports the exceptional situation. As described previously, the Policy Manager is based on XACML. The policy
is described in its XML-based language as follows:

<Policy xmlns=”urn:oasis:names:tc:xacml:2.0:policy:schema:os”

 PolicyId=”anm:policy:remote:allow”

 RuleCombiningAlgId=

 “urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides”>

 <Description>

 Grants access to resource anm:resource:remote

 </Description>

 <Target/>

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

77

 <Obligations>

 <Obligation FulfillOn=”Deny” ObligationId=”anm:obligation”>

 <AttributeAssignment

 AttributeId=”anm:obligation:attribute:action”

 DataType=”http://www.w3.org/2001/XMLSchema#string”

 >DISCONNECT</AttributeAssignment>

 </Obligation>

 </Obligations>

 <Rule RuleId=”anm:rule:remote:allow” Effect=”Permit”>

 <Condition>

 <Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:not”>

 <Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:boolean-is-
in”>

 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#boolean”>

 true

 </AttributeValue>

 <Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function boolean-
bag”>

 <EnvironmentAttributeDesignator

 AttributeId=”anm:environment:multiplaces”

 DataType=”http://www.w3.org/2001/XMLSchema#boolean”

 />

 </Apply>

 </Apply>

 </Apply>

 </Condition>

 </Rule>

 <Rule RuleId=”anm:rule:remote:deny” Effect=”Deny”/>

</Policy>

As expressed in the policy description, if there is an environment attribute called multiplaces set to true, the
response is Deny and is attached with an obligation called action and set to the value DISCONNECT. The rule
is defined in reverse logic to cover a wider range of cases of the boolean condition.

Finally, in this implementation, the Command Performer service only logs the messages it receives without
performing any action.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

78

Figure C.7: Simulated network environment

Figure C.7 shows the test network topology used in the GEMBus evaluation. To tie an environment to GEMBus
objectives, the evaluation scenario was deployed in five servers connected with the PASITO network [PASITO],
the experimental infrastructure for services and protocols provided by RedIRIS. In addition to one local server,
the remaining four were placed in other universities distributed throughout the country. The four remote servers,
acting as remote domains, run the remote AC services. The local server runs the local AC services. To
demonstrate how this scenario behaves in a multi-domain, federated ESB environment, both remote and local
systems contain a complete FUSE ESB installation.

The main goal was to get a feasibility approach of the proposed services. After deploying whole systems in the
servers, local AC services that wait for remote messages were started. All remote AC services were started
except the Quartz Timer ones. After a while, the Collector service received some keep-alive messages sent by
the Collector Timer service, but as the environment was right, no action was prompted. Once the whole system
was uniformly running, the Quartz Timer services were started in order, waiting for a few messages between
them. Then, the remote systems reported that Alice was being connected in remote domain 1, Bob in remote
domain 2 and Chuck in remote domains 3 and 4. Finally, when the local AC services noticed that Chuck was
connected in two domains at the same time, a message was sent to the remote AC services of domains 3 and
4, ordering them to disconnect Chuck. Log messages kept by the ESB of each server were reviewed to follow
the testing process.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

79

C.6 Results

This section describes the results obtained from the test performed to evaluate the proposed architecture. This
starts with a brief description of the web application developed to easily obtain the log messages of all ESB
instances involved in the evaluation, then showing the messages exchanged by the services during the test
performed. As stated previously, the test simulates the concurrent remote connection of the same user in two
different domains. The message emitter service of each domain is started in order, so initially only normal
messages are received. They continue to be received until starting the service of the fourth domain that emits
the messages indicating that a second Chuck is connected (a second user able to identify him/herself as
Chuck). At this point, the system reacts and sends a message to the third and fourth domains, indicating that
Chuck must be disconnected.

Figure C.8: Control console web application with a few messages per server

The test environment incorporated the OSGi feature that allows remote connections using SSH protocol to get
the log messages of each ESB instance. Figure C.8 shows a screenshot of the application. It has a box for
each server to display its log messages. All boxes are updated every five seconds. A box is dedicated to the
local instance, and each one of the four remaining boxes is dedicated to each remote instance and has a label
indicating such. In addition, there is a pause/restart button that prevents the web being updated, but the
services are still running in the background. Moreover, there are buttons to start and stop the remote message
emitters, as well as a label that indicates if it is started or stopped. The new messages on each box display in
blue, so when they are updated, it is easy to see what happened from the last update. Because of the slow
interaction channel with the ESB instances, all requests were performed in parallel. Because of the large size of
the original HTTP response, gzip compression was used to send that response to the client browser.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

80

The following sections describe the message exchanges produced by AC services during the test as well as
the overall behaviour of the system in each step. The messages were grabbed from the logs after each action,
so there is a record of the exchanged messages of the system when the local instance was the only one
started and the exchanged messages after the startup of each remote domain.

C.6.1 Initial State Scenario

The first step in the test is the startup of each ESB instance. After that, the only message exchanges are
caused by the Collector-Timer service, which sends a message every 20 seconds to keep alive the other
services and make them refresh their state or perform any necessary operation.

Figure C.9: Message exchanges, periodically generated messages

Figure C.9 shows a simplified test scenario, depicting whole domains as boxes and, for the local domain, only
the services involved in the message exchanges. In addition, it shows the message exchange prompted by the
Collector-Timer service, which is the first message exchange. The information sent by this service is not
important because the exchange only serves to wake up the Collector service. In this exchange, the entire
message is as follows:

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<timer>

 <name>{http://anm.org/collector-timer}collector-timer:endpoint</name>

 <group>DEFAULT</group>

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

81

 <fullname>DEFAULT.{http://anm.org/collector-timer}collector-
timer:endpoint</fullname>

 <description/>

 <fireTime>Wed May 26 20:39:40 CEST 2010</fireTime>

</timer>

There are many fields in the message, but they are not used as noted previously. The second message is sent
by Collector service to Decider service. The environment is empty because remote services did not send a
message:

<environment></environment>

The Decider asks the Policy Manager to determine the correctness of that environment. With the response of
the Policy Manager, the Decider builds a message and sends it to the Changer. This is the final message
exchange and its content is as follows:

<order>

 <subject></subject>

 <resource></resource>

 <action></action>

 <decision>Permit</decision>

 <obligation></obligation>

 <action-subject></action-subject>

 <action-destination>

 </action-destination>

</order>

There are many fields, but most of them are empty in the present operation. The subject, resource, action,
decision and obligation are obtained directly from the policy response but the action-subject and
action-destination fields are managed by the Decider and obtained from the environment. As the environment is
empty, these two fields are also empty.

C.6.2 First Remote Domain Started (Alice)

The next step in the tests is to start the first remote domain. In this scenario, the local domain starts receiving
messages from the outside. The Collector service receives those messages, with the messages sent every 20
seconds by Collector-Timer. Remote domains send a message every five seconds. This domain sends
messages reporting the connection to Alice.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

82

Figure C.10: Message exchange, remote domain report

Figure C.10 shows the message exchanges provoked by services in this scenario. As in the previous scenario,
it only shows the elements involved in the message exchanges. Although they are not displayed in the diagram,
this scenario also uses wake-up messages that are not part of the AC services. They are used just to prompt
the remote domain to send its corresponding message. Message Issuer receives the following message inside
the remote domain:

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<timer>

 <name>{http://anm.org/quartz-emitter}quartz-emitter:endpoint</name>

 <group>DEFAULT</group>

 <fullname>DEFAULT.{http://anm.org/quartz-emitter}quartz-
emitter:endpoint</fullname>

 <description/>

 <fireTime>Thu May 27 10:20:15 CEST 2010</fireTime>

</timer>

As in the previous domain, no field for this timer message is used. The entire message is used to prompt the
remote domain to send a message to the local domain, specifically to the Collector service, indicating that a
user is connected. In this case, as the remote domain is the first one, Alice is that user. The entire message
reads as follows:

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

83

<jbi:message

 xmlns:jbi=”http://java.sun.com/xml/ns/jbi/wsdl-11-wrapper”

 xmlns:msg=”http://anm.org/message-input”

 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

 name=”DeliveryMessageRequest”

 type=”msg:DeliveryMessageRequest”

 version=”1.0”>

 <jbi:part>

 <tns:DeliveryMessage xmlns:tns=”http://anm.org/message-input/types”>

 <tns:message>

 <entry>

 <source>remote-bus-1</source>

 <subject>Alice</subject>

 <resource>eduroam</resource>

 <action>connect</action>

 </entry>

 </tns:message>

 </tns:DeliveryMessage>

 </jbi:part>

</jbi:message>

The Collector service receives this entire message.. Originally, it was received as a SOAP request by Message
Input service, but then translated to JBI and sent through the ESB to the Collector service. As a result, this
message has all JBI envelopes (jbi:message, jbi:part) as well as the envelopes defined by Message Input
service (tns:DeliveryMessage, tns:message). The message body, its important part, is delimited by entry tag.
There are four fields in the message. The first field, source, establishes the source domain or ESB instance for
the message; in this case it is remote-bus-1. The field subject then establishes who (element or person)
provoked the dispatch of this message. The field action determines the action that was performed by the
element or person. Finally, the field resource determines which resource was involved in the action.

There is no mandatory field in this message. All fields under entry tag will be added to the environment
description by the Collector service for further processing. With this, the system gains flexibility and generality.

After receiving the message, the Collector service then updates the environment description. In addition, the
same message content is sent to the Analyser, but in a raw message. The content of this message is as
follows:

<entry>

 <source>remote-bus-1</source>

 <subject>Alice</subject>

 <resource>eduroam</resource>

 <action>connect</action>

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

84

</entry>

The content received by the Analyser service is the same as in the previous message. This content is
processed by the Complex Event Processor (CEP), and must be initialised if that was not done previously. If
the CEP finds something wrong, it will send back a message to the Collector service. As the configuration set in
the Analyser service is to detect users connected in more than one domain, this scenario does not dispatch the
expression, so it does not send a message.

After sending the entry message to the Analyser service, the Collector builds the environment description set,
composes a message to represent it and sends this message to the Decider. The message is as follows:

<environment>

 <source>remote-bus-1</source>

 <subject>Alice</subject>

 <action>connect</action>

 <resource>eduroam</resource>

</environment>

As the local domain received only one message, the environment only has the fields received on that message.
With this environment description, the Decider service asks for its correctness to the Policy Manager. To build
the policy request, the Decider uses the subject, resource and action items from the environment description to
set the main policy request fields. It also uses the other environment items to set the environment entries of the
policy request. The policy response sent by the Policy Manager is used by the Decider to build and send an
order message to the Changer service. The message is similar to the one shown in C.6.1, but with the
difference that the value of field subject is Alice (line 2), the value of the field resource is eduroam and the value
of the field action is connect. In contrast with the message received by the Changer service in the previous
scenario, the subject, resource and action fields are filled with the same values found in the environment
description set. As the field action-destination of the order is empty, the Changer service does nothing with it.

C.6.3 Second Remote Domain Started (Bob)

This section describes the message exchanges provoked by the startup of the Quartz Timer service of the
second remote domain. This scenario is almost the same as that in section C.6.2, with the exception that in this
scenario the source field of the entry sent by the remote domain is set to remote-bus-2 and the subject field is
set to Bob. The content of the message received by the Collector service is similar to the previous scenario,
with the commented differences in lines 2 and 3.

In addition, the remaining messages have the same differences as those in the previous scenario. The last
message that is sent to the Changer service is similar to the one in section C.6.1, but with the difference that
the value of the field subject is Bob, the value of the field resource is eduroam and the value of the field action
is connect. As happens in the previous scenario, in this scenario, the Changer service does not send any
message because the field action-destination is not fulfilled.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

85

C.6.4 Third remote Domain Started (Chuck)

The resulting scenario after starting the Quartz Timer for the third domain is almost the same as the two
previous scenarios, but again with differences in the subject and source fields. For this reason, this scenario is
used to note certain particularities of the behaviour of the services. First, the content of the message, without its
enclosure, received by the Collector service is similar to the one shown in C.6.2, with the value remote-bus-3 in
the source (line 2) and Chuck in the subject (line 3). The values of the other fields are the same as those of the
previous scenarios. This message is then sent to the Analyser service and the updated environment description
set is sent to the Decider service. The content of the message sent to the Decider service is as follows:

<environment>

 <source>remote-bus-3</source>

 <subject>Chuck</subject>

 <action>connect</action>

 <resource>eduroam</resource>

</environment>

Note that for each entry message received, as it has the same fields as previous messages, the environment
description set is updated and appears that only the last message was processed. The memory is kept by the
CEP of the Analyser service. If those fields were different for each remote domain, avoiding the overlapping,
the environment description set items would be never overwritten. The environment description set should
represent the current state of the system at any moment. Finally, after asking the Policy Manager service, the
content of the message sent to the Changer service is similar to that in C.6.1, but with the subject, resource
and action fields filled with the values Chuck, eduroam and connect. Again, as the action-description field is not
filled, this order message is not sent to any remote domain. Note that the Permit decision is not processed
because, although the environment is right, the Policy Manager is able to report obligations. The final recipient
of the order message has the responsibility of understanding and performing those obligations.

C.6.5 Fourth Remote Domain Started (Chuck, again)

This section describes the fourth and final scenario. It happens just after the startup of the fourth domain. The
user associated to that domain is again Chuck. AC services should detect that Chuck is connected in two
different domains and to take part on its resolution, sending the appropriate orders to the remote domains
which are determined by the Policy Manager service.

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

86

Figure C.11: Message exchange, remote domain report, duplicated subject

Figure C.11 shows the resulting scenario after the startup of the fourth domain. This scenario is different from
the previous scenarios and there are substantially more message exchanges. As in the other scenarios
activated by remote domains, the Collector service receives an entry message to update its environment
description set. The message without envelope (only message content) is similar to the one shown in C.6.2.
The content of this message is the entry item with its typical fields. The values are specific for the fourth domain,
so it has remote-bus-4 as source (line 2), Chuck as subject (line 3), eduroam as resource (line 4) and connect
as action (line 5). This content is sent again to the Analyser service in a message with the same content.
Although this message is very similar to those sent in the previous scenarios, now the Complex Event
Processor (CEP) of the Analyser service dispatches a pattern recognition event because it has a statement that
detects a user connected in more than one remote domain. The Analyser handles the event dispatched by the
CEP and sends a message to the Collector service to update the environment with the new information
collected from the different entries received in time. This message is as follows:

<environment>

 <set>

 <multiplaces>true</multiplaces>

 </set>

 <merge>

 <action-subject>Chuck</action-subject>

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

87

 <action-destination>remote-bus-4, remote-bus-3</action-destination>

 </merge>

 <ttl>5</ttl>

</environment>

This message indicates to the Collector service that it has to set a new environment description entry called
multiplaces with the value true. If that entry already exists, the Collector overwrites it. Moreover, the message
urges the Collector to merge two more entries into the environment description set. The first item is the
action-subject with value Chuck and the second is action-destination with value remote-bus-4, remote-bus-3. If
the environment description set does not have these items, the Collector will add them as new. Otherwise, if
they already exist, the Collector will merge their values into the existing items. Finally, the message indicates
that these items should have a time-to-live of five messages, which indicates that these values should be
discarded after sending them to the Decider more than five times without being refreshed. All these
environment updates requested to the Collector are prompted by the CEP statement, so they can be configured
during the system construction.

After processing the message described above and performing the requested operations, the Collector service
builds a new message from the updated environment description set and sends it to the Decider. This new
message is as follows:

<environment>

 <source>remote-bus-4</source>

 <multiplaces>true</multiplaces>

 <subject>Chuck</subject>

 <action>connect</action>

 <resource>eduroam</resource>

 <action-subject>Chuck</action-subject>

 <action-destination>remote-bus-4, remote-bus-3</action-destination>

</environment>

Note that, although the first items are very similar than those from previous scenarios, there are three new
items in the environment, prompted by the Analyser service. The new items are: multiplaces with value true,
action-subject with value Chuck and action-destination with value remote-bus-4, remote-bus-3. The remaining
items have the same value set from the previous entry message received by the Collector. With this message,
the Decider builds a policy request, using the method described previously. It sends it to the Policy Manager to
assess the correctness of the environment. This time, the Policy Manager does not emit a positive response
but a rejection response, so the value of the decision field is Deny. The Decider does not change its behaviour
depending on the decision field. It just builds a message using entries from the environment description set and
from the policy response. The message it sends to the Changer is similar to the following:

<order>

 <subject>Chuck</subject>

 <resource>eduroam</resource>

 <action>connect</action>

Practical Case: AC Prototype

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

88

 <decision>Deny</decision>

 <obligation>DISCONNECT</obligation>

 <action-subject>Chuck</action-subject>

 <action-destination>

 remote-bus-4, remote-bus-3

 </action-destination>

</order>

This time, the action-destination field of the message received by the Changer is not empty, so it delivers this
order to the destinations indicated in that field. This order has four important fields and three less important.
The important ones are decision, obligation, action-subject and action-destination, with the values Deny,
DISCONNECT, Chuck, remote-bus-4, remote-bus-3, respectively. This means that the environment is
unacceptable, so the subject Chuck must be disconnected from the domains 3 and 4. The other less important
fields are informative. They describe the rest of the environment and can be useful to correct it. The order
message is finally sent to the indicated remote domains, so the Changer sends the same message as shown
above. The only difference between the message sent to domain 3 and the message sent to domain 4 is the
namespace used in the envelope to match the destination service namespace (xmlns:msg). The messages are
received by the Command Performer service instantiated in remote domains. This service is responsible for
performing the obligation that is set in the corresponding field of the order message. The Command Performer
can use the information in the other fields if it is necessary. Since eduroam services were not used in this test,
this implementation only sends an entry to the system to indicate the message was received. If it were actually
connected to eduroam, the Command Performer service would transform the message, using utilities provided
by the ESB framework (such as routing, filtering and binding components), and send it to the corresponding
network element that performs the indicated obligation in the real equipment.

References

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

89

References

[AC] The Vision of Autonomic Computing
 Jeffrey O. Kephart and David M. Chess
 IEEE Computer, 36(1):41–50, 2003
[ACOV] Autonomic Computing: An Overview
 Manish Parashar and Salim Hariri
 Proceedings of the International Workshop on Unconventional Programming Paradigms, pages

257–269, Springer, 2004
[AUTOBAHN] http://www.geant.net/Events/ICT2010/Pages/AutoBAHNAnOverview.aspx
 http://www.geant2.net/server/show/nav.756
[BPMN] http://www.bpmn.org/
[CLARIN] http://www.clarin.eu
[CSA] GEANT3 Project Deliverable DJ3.3.1: Composable Network Services use cases

D. Lopez and I. Thomson, (January 2010)
http://www.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-09-198-
DJ3_3_1_Composable_Network_Services_use_cases.pdf

[DAME] http://dame.inf.um.es/
[DJ2.1.1]. Information schemas and workflows for multi-domain control and management functions

Note: awaiting publication.
[eduGAIN] http://www.edugain.org/
[EDUROAM] http://www.eduroam.org/
[ESB] http://searchsoa.techtarget.com/tutorial/ESB-Tutorial
 Enterprise Service Bus

Chappell, D. (2004, June), O’Reilly, 247 pp
 Exploring the Enterprise Service Bus, Part 2: Why the ESB is a fundamental part of SOA

G. Flurry and R. Reinitz (2007)
http://www.ibm.com/developerworks/webservices/library/ar-esbpat2/

[ESPER] http://esper.codehaus.org/
[FI] Future internet = content + services +management
 J. Schonwalder, M. Fouquet, G. Rodosek and I. Hochstatter
 IEEE Communications Magazine, 47(7):27–33, 2009
[FOAF] http://www.foaf-project.org/
[FTICKS] http://monitor.eduroam.org/f-ticks/
IGTF http://www.igtf.org
[IPSPHERE] http://www.tmforum.org/ipsphere
[JSON] www.json.org/
[KERBEROS] http://www.kerberos.org

References

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

90

[LINKEDDATA] http://linkeddata.org/
[NGN] http://www.itu.int/en/ITU-T/gsi/ngn/
[ODE] http://www.ode.apache.org/
[OASIS] http://www.oasis-open.org/
[OGSA] http://www.globus.org/ogsa/
[OSAMI] http://www.osami-commons.org/
[OSGI] http://www.osgi.org/Main/HomePage
[OSSIMM] http://www.opengroup.org/soa/source-book/osimm_summary/
 https://www.opengroup.org/projects/osimm/uploads/40/17990/OSIMM_v0.3a.pdf/
[OWL] http://www.w3.org/TR/owl-features/
[PASITO] http://www.rediris.es/proyectos/pasito/index.html.en
[PERFSONAR] http://www.geant.net/Services/NetworkPerformanceServices/Pages/perfSONARMDM.aspx]
[PUBSUBHUBBUB] http://code.google.com/p/pubsubhubbub/
[RDF] http://www.w3.org/TR/rdf-schema/
[REST] REST services operate on URLs, which may respond with XML messages as well as other

formats. JavaScript Object Notation (JSON)
 REST: L. Richardson and S. Ruby. (May 2007). RESTful Web Services. O’Reilly Media, Inc.

ISBN-10:0596529260
[SAML] http://saml.xml.org/
[SERVICEMIX] http://servicemix.apache.org/home.html
 Apache ServiceMix ESB 3.0 to FUSE ESB 4.2
[SEWSR] Semantically Enabling Web Service Repositories

http://sweet-dev.open.ac.uk/war/Papers/mmaRepositoriesReport.pdf
[SOA] http://www.oasis-open.org/committees/tc_cat.php?cat=soa
 http://www.service-architecture.com/web-services/articles/service-

oriented_architecture_soa_definition.html
 Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S. (2002).

Unravelling the Web services web: an introduction to SOAP, WSDL and UDDI. IEEE Internet
Computing

[SOAP] http://www.w3.org/TR/soap/
 http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
[SOMO] Self-organising Management Overlays for Future Internet Services
 Lawrence Cheng, Alex Galis, Bertrand Mathieu, Kerry Jean, Roel Ocampo et al.
 Proceedings of the 3rd IEEE International Workshop on Modelling Autonomic Communications

Environments, pages 74–89. Springer-Verlag, 2008
[TAVERNA] http://www.taverna.org.uk/
[TMF-SDF] http://www.tmforum.org/browse.aspx
[TMF SDF] http://www.tmforum.org/ManagementWorld2008/SDFOverview/5036/Home.html
[USDL http://www.w3.org/2005/Incubator/usdl/
 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1530890
[VCLOUD] Harnessing Cloud Technologies for a Virtualized Distributed Computing Infrastructure
 Alexandre di Costanzo, Marcos Dias de Assunção and Rajkumar Buyya
 IEEE Internet Computing, 13(5):24–33, 2009
[VIRSYSMNG] Towards a Service Management System in Virtualized Infrastructures
 Roman Belter
 Proceedings of the 2008 IEEE International Conference on Services Computing, pp 47–51
[W3C] World Wide Web Consortium www.w3.org

References

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

91

[WADL] http://www.w3.org/Submission/wadl/
 http://wadl.java.net/
[WS-Addressing] http://www.w3.org/Submission/ws-addressing/
[WSDL] http://www.w3.org/TR/wsd/
 Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weerawarana, S. (2002).

Unravelling the Web services web: an introduction to SOAP, WSDL and UDDI. IEEE Internet
Computing

[WSS] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
 Web Services Security: SOAP Message Security 1.1 (WS-Security 2004) OASIS Standard

Specification, 1 February 2006
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

[WSP] Web Services Policy 1.5 – Framework
W3C Recommendation 04 September 2007
http://www.w3.org/TR/ws-policy/

[WSBPEL] http://www.oasis-open.org/committees/wsbpel/
 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
[WST] WS-Trust 1.3. OASIS Standard. 19 March 2007

http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
[X509] http://www.itu.int/rec/T-REC-X.509/en
[XACML] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
[XACMLLIGHT] http://xacmllight.sourceforge.net/

Glossary

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

92

Glossary

AC Autonomic Computing
ANI Application Network Interface
API Application Programming Interface
AS Authorisation Service
AutoBAHN Automated Bandwidth Allocation across Heterogeneous Networks
BC Binding Components
BoD Bandwidth-on-Demand
BPEL Business Process Execution Language
BPMN Business Process Modelling Notation
CEP Complex Event Processor
CLARIN Common Language Resources and Technology Infrastructure project
CLMP Command Line Measurement Point
CSA Composable Service Architecture
CUI Chargeable-User-Identity
CVS Concurrent Versions System
DAMe GN2 Project

Deploying Authorisation Mechanisms for Federated Services in the eduroam Architecture
DNS Domain Name Service
e.g. For example…
eduGAIN AAI confederation created in GN2 JRA5

for the purpose of interconnecting a set of national and community-wide AAI federations
eduroam Roaming confederation aiming to provide mutual roaming network access to its members
EPR Endpoint reference (for SOAP messages)
ESB Enterprise Service Bus
F-Ticks Federated Ticker System, statistic tool from GN3-JRA3-T1 and GN3 SA3 T2
FI Future of Internet (FI)
FOAF Friend Of A Friend
FQN Fully Qualified Name
GEMBus GÉANT Multi-domain Bus
GLOS GEMBus Logging Services
GMI GEMBus Messaging Infrastructure
GRI Global Reservation ID
gzip GNU zip (compression utility)
HTTP Hypertext Transfer Protocol
ID Identity

Glossary

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

93

Identity Federation Federated AAI containing multiple IdPs trusted by the members of the federation
IdP Identity Provider
i.e. In other words…
IGTF International Grid Trust Federation
IP Internet Protocol
IPSphere TM Forum’s framework for rapid service delivery
ISS Infrastructure Support Services
ITU-T International Telecommunication Union, Telecommunication Standardisation Sector
JBI Java Business Integration
JSON JavaScript Object Notation
Kerberos Network authentication protocol
MAC Message Authentication Code
MOM Message-oriented Middleware
NGN Next Generation Network
NMR Normalised Message Router
NREN National Research and Education Network
OASIS Organisation for Advancement of Structured Information Standards
ODE (Apache) Orchestration Director Engine
OGF Open Grid Forum
OGSA Open Grid Services Architecture
OSAMI Open Source Ambient Intelligence
OSE Open Service Environment
OSGi Open Services Gateway Initiative (now OSGi Alliance)
OSSIMM Open Group Services Integration Maturity Model
OWL (Web) Ontology Language
PASITO Telecommunications Service Analysis Platform

Experimental infrastructure for services and protocols provided by RedIRIS
perfSONAR PERFormance Service Oriented Network monitoring Architecture
QoS Quality of Service
RADIUS Remote Authentication Dial-In User Service (IETF standard)
RDBM Relational Database Management System
RDF Resource Description Framework
RDL Resource Description Language
REST Representational State Transfer
RRDMA Measurement Archive
RST Request Security Token
RSTR Request Security Token Response
SAML Security Assertion Markup Language (OASIS standard)
SDF Service Delivery Framework
SE Service Engine
SeT Session Token
SLA Service Level Agreement
SNMP Simple Network Management Protocol
SOA Service-oriented Architectures
SOAP Simple Object Access Protocol
SP Service Provider
SPARQL Query language from the W3C for searching data defined in the RDF format

Glossary

Deliverable DJ3.3.2
Composable Network Services Framework
and General Architecture: GEMBus
Document Code: GN3-11-002

94

SQL Structured Query Language
SSH Secure Shell
SSL Secure Sockets Layer
STS Security Token Service
SU Service Units
TLS Transport Layer Security
TMF TeleManagement Forum
TTS ticket translation service
UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
USDL Universal Service Description Language
VLAN Virtual Local Area Network
VPN Virtual Private Network
W3C World Wide Web Consortium
WADL Web Application Description Language
WMS Workflow Management System
WS Web Services
WSA Web Services Architecture
WS-BPEL Web Services Business Process Execution Language (BPEL)
WSDL Web Services Description Language
WSP Web Services Policy
WSS Web Services Security
WST WS-Trust
X.509 ITU-T computer networking standard covering electronic directory services, digital certificates
XML eXtensible Mark-Up Language
XSD XML Schema Definition

