

16-03-2012

Deliverable DJ3.3.3
Composable Network Services:
GEMBus Developments

Deliverable DJ3.3.3 v1.0

Contractual Date: 31-01-2012

Actual Date: 16-03-2012

Grant Agreement No.: 238875

Activity: JRA3

Task Item: T3

Nature of Deliverable: R

Dissemination Level: PU

Lead Partner: RedIRIS

Document Code: GN3-12-003

Authors: Pedro Martinez-Julia (UMU.ES), Yuri Demchenko (UvA), Mary Grammatikou (GRNET), Roland Hedberg

(UMU.SE), Jordi Jofre (i2CAT), Steluta Gheorghiu (i2CAT), Constantinos Marinos (GRNET), Stella Kafetzoglou

(GRNET) Antonio-David Pérez-Morales (RedIRIS), Elena Torroglosa (UMU.ES), Marcin Dębowiak (PSNC),

Łukasz Dolata (PSNC), Krzysztof Dombek (PSNC), Maja Gorecka-Wolniewicz (UMK-PSNC), Tomasz

Wolniewicz (UMK-PSNC), Bartłomiej Idzikowski (PSNC), Maciej Glowiak (PSNC)

© DANTE, on behalf of the GÉANT project.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme

(FP7 2007-2013) under Grant Agreement No. 238875 (GÉANT).

Abstract

The aim of GEMBus is to enable collaboration between networks, share services and facilitate composition of more complex ones,

establishing seamless access to the network infrastructure and services. This deliverable presents the framework for GEMBus, the GN3

federated, multi-domain service- bus. It details infrastructure developments, as well as how different services are integrated with GEMBus.

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

ii

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

iii

Table of Contents

Executive Summary vi

1 Introduction 1

2 GEMBus Architecture 2

2.1 Overview and Components 2

2.2 How Does GÉANT Benefit from GEMBus? 3

2.3 Why Should You Connect Your Service to GEMBus? 4

3 Consolidation of GEMBus Core Services 5

3.1 Composition 5

3.1.1 Composition Engine Requirements 6

3.1.2 Example Scenarios 6

3.2 Security 6

3.2.1 GEMBus STS Design and Implementation 8

3.2.2 Security Token Processing Example 10

3.2.3 STS Extension Points 14

3.2.4 OpenID Connect 14

3.3 GEMBus Registry 15

3.3.1 The API 15

3.4 Accounting 17

3.4.1 Implementation Aspects 20

3.5 Messaging Infrastructure 23

4 GEMBus/ESB Testbed 24

4.1 Example Demo Scenario (Multi-Domain User Services Deployment) 25

4.2 User Services Deployment 26

5 Service Characterisation and Deployment 27

5.1 Canonicalisation and Reference Services 27

5.1.1 Canonicalisation 27

5.1.2 Reference Services 27

5.2 Service Validation 29

5.3 Service Repositories 30

5.4 Flagship Applications: F-Ticks 35

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

iv

5.4.1 Adding F-Ticks to GEMBus 35

5.4.2 Implementation 36

5.4.3 Result 37

6 Current General Status and Future Work 39

6.1 Further Developments 40

6.2 The GEMBus Cookbook 40

6.3 FUSE Source Collaboration Proposal 41

Appendix A Implementation Details and Code 43

A.1 STS Configuration 43

A.2 Message Broker Configuration 46

Appendix B Installation of Additional Composition Components 48

B.1 Installation of Testing and Debugging Components 48

B.2 Process Modelling 50

B.2.1 Intalio Designer Installation. 50

B.2.2 Process Implementation 50

B.3 Code and OSGi Bundle Generation and Deployment 53

B.4 Processes and Instances Management 56

References 58

Glossary 60

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

v

Table of Figures

Figure 2.1: GEMBus core components 3

Figure 3.1: GEMBus integration scheme 7

Figure 3.2: Class diagram of Security Token Service 9

Figure 3.3: Security token validation request 13

Figure 3.4: GEMBus accounting architecture 20

Figure 3.5: Apache CXF interceptor chains [ApacheInt] 21

Figure 3.6: Flow through an interceptor [ApacheInt] 21

Figure 4.1: Testbed for GEMBus/ESB-based services composition (using Cloud PaaS service

model) 24

Figure 4.2: Testbed data and control interconnection topology 25

Figure 4.3: Demo scenario services composition 26

Figure 5.1: Service interceptor, core service and reference services container connections 29

Figure 5.2: GEMBus Service Repository architecture 31

Figure 5.3: Repository client 33

Figure 5.4: F-Ticks framework 36

Figure 6.1: Using GEMBus in a multi-domain scenario 39

Figure A.1: Message router configuration 47

Figure B.1: Eclipse plug-in for GEMBus: Overview window 49

Figure B.2: Eclipse plug-in for GEMBus: Deployment window 50

Figure B.3: Intalio Designer: New project wizard 51

Figure B.4: Intalio Designer: Process Editor 52

Figure B.5: Intalio Designer: Mapper View 53

Figure B.6: Intalio Designer. Project Manifest Editor 54

Figure B.7: Intalio Designer: Process Explorer 55

Figure B.8: Eclipse Plug-in for GEMBus. Management window 57

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

vi

Executive Summary

This document presents the consolidation of the framework and general architecture for GEMBus (GÉANT

Multi-Domain Bus), the federated, multi-domain, service bus infrastructure being developed as part of the GN3

project. The aim of GEMBus is to enable collaboration between networks, share services and facilitate service

composition by establishing seamless access to the network infrastructure and services. The GEMBus

architecture follows Service-Oriented Architecture (SOA) principles, which allows managing, maintaining, and

accessing heterogeneous and distributed resources in a unified way by providing standardised interfaces and

common working environments to their users. The GEMBus architecture has been designed to offer and

support service composition (inherited by the SOA model), that is, the ability for an application to be turned into

a reusable component. For example, GEMBus could be used to create a new service that automatically obtains

digital certificates (by automatically contacting a certification authority), feeds them to a tool that generates

scripts to configure users’ devices (i.e. mobile phones) and makes the script available to download from a

website. The alternative would be to provide a link to the Certification Authority (CA) that issues the server

certificate and provides configuration and verification via the portal.

GEMBus is also aligned with the industry adopted Enterprise Service Bus (ESB) concept, which is extended to

support dynamically reconfigurable and virtualised services as a general service bus architecture.

Most current ESB frameworks are oriented to single-enterprise deployments, which rely on a central, top

administrative authority. GEMBus aims to bring the advantages of these frameworks to an open, collaborative

environment, resulting in a further step towards the federation of infrastructures and the definition of a multi-

domain service bus infrastructure, a “bus of buses”.

GEMBus provides elements that maintain interoperability services for location, security, messaging and

composition. These components form the core of GEMBus; they provide support to services participating in

GEMBus through their whole lifecycle.

Lifecycle management is an important part of the Composable Service Architecture (CSA) and is important to

the underlying design and operation of GEMBus. It is the basis for CSA provisioning and delivery service,

incorporating service request, composition, deployment, operation, and decommissioning stages.

Service integration is a complex process. One of the objectives of GEMBus is to ease the integration of existing

service platforms in the GÉANT network infrastructure and user communities. This document describes the

service integration platforms identified by the team while defining aspects of GEMBus’s architecture pertaining

to service connection and support of dynamically reconfigurable and virtualised services.

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

1

1 Introduction

This document presents the ongoing results of the GEMBus (GÉANT Multi-Domain Bus) development.

GEMBus is aligned with the industry-adopted Enterprise Service Bus (ESB) concept, which is extended to

support dynamically reconfigurable and virtualised services as a general service bus architecture.

GEMBus is not a newly developed ESB; it builds on the assumption that each (GÉANT) domain may use a

preferred ESB platform, or any other bus-type service communication or messaging environment, and that

GEMBus would act as the link between these buses. In other words, GEMBus would ‘federate’ the buses.

The bus paradigm provides the additional advantage of freeing service developers from dealing with common

aspects such as authentication, authorisation, accounting, service discovery, and message management when

developing their services. This enables them to concentrate on the direct implementation of business

processes. Most (if not all) current frameworks are oriented to single enterprise deployments that, although

complex, rely on a central top administrative authority.

GEMBus intends to bring the advantages of these frameworks into an open and collaborative environment,

which will federate infrastructures and support the definition of a multi-domain infrastructure, a “bus of buses”.

Moreover, the GEMBus architecture also addresses multi-domain issues, distributed services composition and

orchestration.

The experience of the research community when deploying federated architectures dictates strict adhesion to

simplicity as the topmost design goal, to ease integration of disparate participant infrastructures and to facilitate

interoperation at a common and agreed level. As a result, there are few requirements for an infrastructure to

become part of GEMBus. Most interoperation mechanisms are regarded as end-to-end issues, although

GEMBus is committed to provide mediation services for location, authentication, authorisation, accounting, and

composition. The components that facilitate these mediation services are referred to as the GEMBus core.

They are intended to provide support to participating GEMBus services throughout their lifecycle.

Service integration can be complicated and time-consuming. This document consolidates the definition of the

integration patterns, starting with Deliverable 3.3.2, Composable Network Services Framework and General

Architecture: GEMBus, and including those identified by the GEMBus team during experiments to establish the

core components of the architecture (presented in this document). Discussion is also provided on the interface

mechanisms that GEMBus offers to any application or computing element willing to make use of its services.

The document also provides design suggestions and describes an initial setup of the joint GEMBus/ESB

technology testbed planned for the GN3 community.

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

2

2 GEMBus Architecture

2.1 Overview and Components

The GEMBus architecture follows SOA principles, namely:

 SOA services are independently managed and communicated via well-defined messages, typically

using Simple Object Access Protocol (SOAP) or REpresentational State Transfer (REST) protocols.

 Each bus in a domain maintains a local registry that lists the services available in that domain.

 Each service is described in the local registry using a well-defined standard (typically one that is XML-

based).

 Each service wishing to be accessed via GEMBus should comply with a set of minimum requirements

that define the service repository.

 Client applications can request a service as a whole or just some of the functionalities offered by the

service.

Following the evaluation of available ESB platforms (made at the start of the project, and detailed in deliverable

DJ3.3.1), GEMBus selected FUSE [FUSE] as the preferred ESB platform for GEMBus implementation. The

GEMBus architecture, described below, is therefore being developed using the FUSE platform extended by

necessary messaging infrastructure configuration profiles for inter-domain GEMBus/ESB communication.

In order to provide the best support to a multi-domain services federation, GEMBus will include the following set

of core components:

 Federated Service Registry: To talk to the local registries and announce the services available

globally, allowing the ability to locate and obtain additional information about the services.

○ Status: Developed, in beta-version.

 Service Repository: To store service bundles
1
 allowing their deployment via GEMBus. The GEMBus

Service Repository will be accessible via a Web Interface, shell console and RESTful interface.

○ Status: Under development.

1 ’Service bundles’ refers to a group of services, typically in Open Grid Services Infrastructure (OGSi) format, but in this context it can

mean any group of services.

GEMBus Architecture

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

3

 Security Token Service: (STS): Is built as a WS-Trust (Web Services, Trust extension) implementation,

issues, verifies and translates security tokens to allow the authentication of requesters in a federated,

multi-domain environment. Requesters can use these tokens to request access to a service; in turn, the

service checks the validity of the token before granting access to the requester.

○ Status: Basic functionality, extensions and improvements being worked on. A demonstrator is also

available.

 Composition Service: To enable composition of services. This can be offered as a centralised service

via the orchestration engine that is typically part of an ESB, or as an on-demand, deployed service, by

downloading and deploying the necessary components locally using an OSGi service management

framework/standard.

○ Status: Demonstrator available.

 Accounting Service: This service provides configurable and aggregated access to the GEMBus log-in

service to support monitoring, auditing, diagnostics and troubleshooting.

○ Status: Under development.

Figure 2.1 provides a high-level view of the GEMBus core components described above.

Figure 2.1: GEMBus core components

2.2 How Does GÉANT Benefit from GEMBus?

GEMBus provides an opportunity to access existing GÉANT services in a unified way and to create new, on-

demand, customised services for user-specific needs or projects. Using standard interfaces and interactive

service composition will allow users to focus on service functionalities without the need for details of service

implementation and programming.

GEMBus Architecture

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

4

An added value of GEMBus is that users will be able to integrate GÉANT services with their commonly used

workflows.

The well-structured way of interacting with services proposed by GEMBus will simplify the use of the core

GÉANT services (security, accounting, monitoring, etc.) by any resource deployed in GÉANT.

2.3 Why Should You Connect Your Service to GEMBus?

In the past, when developing a service, developers needed to consider every aspect of service delivery, from

instantiation in a server, to the mechanisms employed by a client to use it (including specific APIs, client

libraries, and specific protocols for that service). It was also difficult to integrate the service with any other

service in order to enhance the offered functionality and derive what is known as a "mashup".

Deploying a service in GEMBus means that the service does not need to include mechanisms to deal with

specific instantiation aspects, such as the different protocols used by service consumers. It will also

automatically be available for integration with other services (composition of services), but always be subject to

the security constraints set by service administrators. Moreover, the service deployed via GEMBus gains

federation capabilities, so services deployed in other domains are able to consume or be composed with that

service.

Finally, inside the GÉANT community, when a service is deployed in GEMBus, it may take advantage of

consuming, being consumed by, or being composed with any other service deployed in GEMBus. To illustrate

its functionality, the library services (book catalogue and reservation) of a number of organisations may be

plugged into GEMBus ‘as they are’, and then combined to build a larger and federated service with integrated

authentication/authorisation, accounting and logging. It does not matter if the services ‘talk’ via different

protocols, the framework will adapt them. Also, the resulting (composite) service may be extended with other

services to offer PDF files of the books, comments or reviews from other users, etc. Another ‘real world’

example can be found in F-Ticks, a service that ‘emits’ RADIUS logging messages obtained from eduroam

events. This service can also be plugged into GEMBus and extended to any client that demands it, together

with specific filters to select the desired events and apply the necessary authentication/authorisation

procedures to the access. Everything is transparent to the service developer, and the services are easily

plugged in because the framework has the necessary mechanisms to compose them, filter messages, apply

security, etc.

In summary, GEMBus permits service developers to focus on the business of the service and let the platform

(GEMBus) provide the other aspects such as security, federation, composition, etc. Hence, by connecting a

service to GEMBus, the chances for that service to become more widely used would be increased.

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

5

3 Consolidation of GEMBus Core Services

The GEMBus Core Services are composed of those elements that provide the functionality required to maintain

the federation infrastructure, allowing the participant SOA frameworks to interoperate, in accordance with

GEMBus principles. This section updates the description of these elements as they consolidate their

functionality, through the definition of initial prototypes, and demonstrates how they are deployed as part of

GEMBus, and how they can be used by participating services from other activities and tasks of GN3.

There are two types of elements, combined to provide the functional elements described below according to the

functionalities of the service frameworks connected to GEMBus:

 Core components that form the federation fabric, enforcing its requirements in regard to service

definition and location, routing of requests/responses and security. These elements are implemented by

specific software elements and by extending and profiling the service frameworks to be connected.

 A set of core services that provide direct support to any service to be deployed in GEMBus, such as the

registry, accounting service, security service, or the composition service described below. These core

services are invoked by the core elements as part of their functions. They can be called from the code

implementing any service deployed in GEMBus. Furthermore, as any other service taking part in the

infrastructure, they are suitable to be integrated within composite services.

In this section we cover the consolidation of the core services, in order to provide an updated view of the state

of the GEMBus framework, as well as any advances in service consolidation. The section provides a detailed

description of the Composition and Security services that are considered the main enabling components for

inter-domain services composition and federation.

3.1 Composition

Composition (based on independent specifications that can be combined to provide more powerful capabilities)

allows for the creation of well-defined, composable web services that support security and reliability. These

services specify the behaviour of the services necessary to support higher-level functionality.

There are four main steps that a developer needs to take to implement the "Simple Web Service Composition"

demo, which are detailed on the demo site [GEMBus].

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

6

3.1.1 Composition Engine Requirements

3.1.1.1 Mandatory Components:

First, and only for the first time, the composition engine must be activated on the GEMBus server issuing the

following command from the karaf console:

karaf@root> features:install ode

Also, if the user wants to use the HelloWorld service provided by GEMBus, the corresponding bundle must be

installed:

karaf@root> features:install examples-cxf-osgi

There are additional components that are useful for testing, debugging and process modelling. Further details

on these components and on their installation, may be found in Appendix B.

3.1.2 Example Scenarios

As introduced in the previous section, the existing services are simply plugged into GEMBus in order to build

composed services. The composition engine is the component that facilitates a user’s (here, the service

developer) potential building of composite services inside GEMBus.

Continuing with the library example introduced in Section 2.3, the user only needs to load the library services,

security service, and accounting service to the composition UI to be connected through the provided tools. In

this example, the requests coming from the outside of the service should be connected to the authentication

service in order to know if the request is from a valid client or not. After passing the security filter, the messages

are sent to the accounting service in order to log the operation. Finally, the request will iterate through the

different library services and a ‘join’ filter is set to add the results from the independent libraries, thereby

building the response that is sent back to the requester.

Another example, the F-Ticks integration, follows the same process, using the security service to validate the

client request and specify the filters to select the required log messages.

3.2 Security

The GEMBus Security Services must provide mechanisms to ensure security, privacy and simplicity for the

communication that takes place within GEMBus architecture. Summarising the design detailed in deliverable

DJ3.3.2, Composable Network Services Framework and General Architecture [DJ3.3.2] the security service is

based on principles established by the WS-Security and WS-Trust. Web Services Security [WSS] is a

communication protocol that provides the means for applying security to web services. It is a member of the

WS-* family of web service specifications and was published by OASIS [OASIS]. WS-Trust [WST] is a WS-*

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

7

specification and OASIS standard that provides extensions to WS-Security, specifically dealing with the issue,

renewal and validation of security tokens, as well as how to establish, assess (the presence of) and broker trust

relationships between participants in a secure message exchange. WS-Trust defines the concept of Security

Token Service (STS), the formats of the messages used to request security tokens as well as the required

mechanisms needed for the exchange.

The GEMBus architecture makes use of an STS concept to offer all these security features. The functionality is

divided in two different elements. First, the Ticket Translation Service (TTS) is responsible for generating valid

tokens in the architecture according to the received credentials. This must include the support of current

(standardised) authentication methods, as well as methods incorporated in the future. Second, token validation

is performed by the Authorisation Service (AS). The validation process can also be associated with more

complex processes of authorisation that imply attribute request and check security policies. If the token is valid,

the AS provides an affirmative answer to the service.

Figure 3.1: GEMBus integration scheme

Figure 3.1 illustrates a scenario in which a STS that has been extended with support for session tokens is

integrated in the GEMBus architecture. In this example, the consumer obtains an identity token (a SAML

assertion, for example) from an identity infrastructure. It then sends an authentication request to the STS using

the identity token. The STS validates the consumer identity token and issues a Security Token (ST) to the

consumer. With the new token, the consumer sends a request message to the provider that is intercepted by

an element that extracts the ST and sends a token validation request to the STS. The AS module validates the

consumer token and issues a response with a validated security token, together with an optional Session

Token (SeT). Finally, the interceptor passes the message to the provider. It processes the consumer request

and sends a response message to the consumer.

 In addition to the flow described here, the service providers (SPs) deployed in GEMBus can validate the

tokens by contacting the STS.

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

8

The STS concept is extended in the GEMBus architecture in order to provide additional functionalities. With the

aim to improve the validation process, the STS is able to request attributes from external entities such as

Attribute Authorities and Identity Providers. This new information could be used alongside of the client's in order

to take an authorisation decision from Policy Points using eXtensible Access Control Markup Language

(XACML).

3.2.1 GEMBus STS Design and Implementation

The architecture proposed by GEMBus is based on message exchanges performed by different services that

can be connected in many ways. Since the ESB is the main integration mechanism provided by GEMBus, and

because the ESB can also act as a service container, it is possible to develop and deploy a service directly on

the bus. However, it is more interesting to exercise the integration capabilities of the ESB, such as interceptors,

message routers and binding components. Whether deployed inside the bus or running as an external service,

the STS can be used in a service composition to transparently provide its capabilities, using the

aforementioned mechanisms.

The current version of the GEMBus STS is written in Java and designed to provide the basic components

described above, as well as to offer points for possible extension in order to guarantee a future evolution of the

GEMBus security services.

The software is divided in two parts:

 The WS-Trust application programming interface (API) library contains the WS-Trust model classes

that represent the elements defined by the specification. Moreover, it also contains some utility classes

to deal with WS-Trust requests and responses in a more simple way.

 The STS components, including a functional STS implementation. These components are extensible

and it is easy to add new functionality or modify existing functionality of these components.

The STS does not issue tokens of a specific type. Instead, it defines generic interfaces that allow multiple

tokens and providers to be plugged in. As a result, it can be configured to deal with various types of tokens, as

long as a token provider exists for each token type.

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

9

Figure 3.2: Class diagram of Security Token Service

As shown in Figure 3.2, the design is based on the use of interfaces to allow component extensibility. This way,

the STS can be extended or modified by implementing these interfaces and changing its configuration.

The GemSTS is the STS web service, the component called by the clients who want to request, renew, cancel

or validate a security token. It implements the SecurityTokenService interface, which in turn, extends the

javax.xml.ws.Provider interface. The only method defined by the SecurityTokenService is the invoke

method. This method takes a single parameter of type Source. The Source object allows for generic XML

content to be transmitted to the Web Service. In this case, a WS-Trust request message.

The WSTrustJAXBFactory class is a utility class that is used by the STS to parse security token requests and

marshal the security token responses. This class converts the XML request message and the Java object

model, and then converts the Java objects to the XML response message that will be returned by the STS.

The STSConfiguration object is used to manage the configuration. This object is constructed by the GemSTS

and contains all the configurations defined by the administrator. It contains information such as the default

token TTL (time-to-live), the request handler, the token providers that can handle a specific token type, the

identity providers upon which the STS relies, etc. The STSConfiguration interface provides a way to access

this information. The concrete implementation of this interface contained in the library is the

GemSTSConfiguration class.

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

10

The WSTrustRequestHandler manages all the business logic of the STS. Instances of this interface are

responsible for actually handling the WS-Trust requests. When an STS receives a token request, it parses the

request message and delegates the request handling to the WSTrustRequestHandler instance that has been

configured. The handler uses either the STS configuration or another mechanism to find out which security

token provider should be used to handle the token request and also to set values for properties that are absent

in the WS-Trust request message. Specifically, the implementations of this interface contained in the STS

library use the GEMBus registry to obtain the appropriate token type expected by a reliable service provider.

The library contains three implementations of this interface: GemRequestHandler, GemTTSRequestHandler

and GemASRequestHandler. These handlers represent the three ways in which the GemSTS can be

deployed:

 STS mode uses the GemRequestHandler and it is able to issue, renew, cancel or validate tokens.

 TTS mode uses the GemTTSRequestHandler and it is only able to issue, renew or cancel tokens.

 AS mode uses the GemASRequestHandler and it only validates security tokens.

The WSTrustRequestContext is a class that represents the security token request context. It contains all

information that is relevant to processing the request. This class is used by the handlers and token providers to

pass information between them, such as keys to use by the token providers, status of a token validation

performed by a token provider, the security token issued by a token provider, etc.

The security token providers are responsible for handling the requests for a specific token type, using the

information contained in the WSTrustRequestContext object. These providers implement the

SecurityTokenProvider interface and they are plugged into the STS via configuration. Examples of token

providers are SAML2TokenProvider, GemTokenProvider, X509TokenProvider, etc.

All providers must extend the BaseSecurityTokenProvider class, which in turn, implements the

SecurityTokenProvider interface. This class supplies a policy engine to the providers, which can then use the

policy engine to perform an authorisation in order to validate security tokens, either in validation requests (TTS)

or before issuing new ones (AS).

As it has already been seen, the PolicyEngine interface is used to provide an authorisation mechanism. The

XACMLPolicyEngine provides a XACML-based policy engine. It makes a XACML authorisation request to a

XACML PDP (Policy Decision Point) using the information contained in the security token and it processes the

result of that request. The XACMLRemotePolicyEngine is similar to the XACMLPolicyEngine, with a

difference in that the latter makes a XACML authorisation request to a remote or external XACML PDP via

SOAP. The policy engine used by each provider is set using the STS configuration.

3.2.2 Security Token Processing Example

Using the configuration shown in the previous section (with the GemRequestHandler), the processing of a

security token issuance request (RST) is as follows:

1. A client sends a security token issuance request to GemSTS.

2. GemSTS parses the request message, generating a Java object model.

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

11

3. GemSTS reads the configuration file and creates the STSConfiguration object, if needed. Then it

obtains a reference to the WSTrustRequestHandler from the configuration and delegates the request

processing to the handler instance.

4. The WSTrustRequestHandler (GemRequestHandler) checks whether a security token exists in the

request. This token represents the user on whose behalf the client is acting.

5. The WSTrustRequestHandler creates the WSTrustRequestContext, setting the relevant information

from the request.

6. The WSTrustRequestHandler uses the STSConfiguration to get the SecurityTokenProvider that

must be used to validate the token, according to the token type.

7. The SecurityTokenProvider instance processes the token validation and stores the validation status in

the request context.

8. If the token validation is successful, the request handler uses the STSConfiguration to set default

values when needed (for example, when the request does not specify a token lifetime value).

9. The WSTrustRequestHandler uses the STSConfiguration to get the SecurityTokenProvider that

must be used to issue the new token based on the type of the token that is being requested. Then it

invokes the provider, passing the WSTrustRequestContext as a parameter.

10. The WSTrustRequestHandler obtains the token from the context and constructs the WS-Trust

response object containing the security token.

11. The GemSTS marshals the response generated by the request handler and returns it to the client.

The processing of a security token validation request is as follows:

1. A client sends a security token validation request to GemSTS.

2. GemSTS parses the request message, generating a Java object model.

3. GemSTS reads the configuration file and creates the STSConfiguration object, if needed. Then it

obtains a reference to the WSTrustRequestHandler from the configuration and delegates the request

processing to the handler instance.

4. The WSTrustRequestHandler creates the WSTrustRequestContext, setting the relevant information

from the request.

5. The WSTrustRequestHandler uses the STSConfiguration to get the SecurityTokenProvider that

must be used to validate the token based on the type of the token contained in the request. Then it

invokes the provider, passing the WSTrustRequestContext as a parameter.

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

12

6. The SecurityTokenProvider instance processes the validation request and stores the validation status

token in the request context.

7. The WSTrustRequestHandler obtains the status from the context and constructs the WS-Trust

response object containing the status response.

8. The GemSTS marshals the response generated by the request handler and returns it to the client.

It is important to note that many different entities can act as clients to GemSTS. A client could be a web-service

client that needs to obtain or renew a security token in order to access the service, but it could also be the web

service itself trying to validate or cancel a token it has received.

The processes described in both the STS issue request and a security token validation request are illustrated in

the following diagrams.

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

13

Figure 3.3: Security token validation request

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

14

3.2.3 STS Extension Points

The design of the STS defines several interfaces that provide extension points. Alternative implementations of

these interfaces can be plugged in to the STS via configuration. The points where the STS can be extended

are:

 STSConfiguration: This interface permits the STS to deal with other configuration files that do not

follow the structure described in the previous sections.

 WSTrustRequestHandler: The STS business logic can be modified while implementing this interface,

for example, supporting additional request processing.

 SecurityTokenProvider: This interface allows new token providers to plug into the STS in order to

support additional token types.

 PolicyEngine: This interface allows different policy engines. For example, it is possible to have a policy

engine based on rules in a plain text file by implementing this interface.

 KeyHolder: The KeyHolder allows the STS and token providers to load keys from different sources. For

example, it is possible to have a KeyHolder which obtains the keys from plain text files by implementing

this interface.

3.2.4 OpenID Connect

OpenID Connect [OIC] is a suite of lightweight specifications that provide a framework for identity interactions

via RESTful APIs. These specifications permit the building of authentication and authorisation schemes based

on existing (and external) identity infrastructures and also use GEMBus to provide authentication and

authorisation services to other applications and services compatible with OpenID Connect. GEMBus can be

aligned and integrated with other service platforms without requiring implementing specific security services or

adapters for them.

OpenID Connect builds on two existing technologies: OpenID and OAuth2. OpenID Connect combines the

resource access management support from OAuth2 [OAuth2] with the distributed identity management built

into OpenID. It also extends the combined functionality by adding some features derived from the SAML2

[SAML2] deployments in higher education and research organisations. The specifications are being developed

by the OpenID foundation [OpenID] and the process has started to standardise the OpenId Connect via the

Internet Engineering Task force [IETF].

Within the OIC framework, user identity information is regarded as a single resource among others managed by

the authorisation framework defined by OAuth2 [OAuth2].

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

15

3.3 GEMBus Registry

The GEMBus registry, sometimes referred to as the Federated Service Registry, is a vital component in the

GEMBus architecture. Its main role is to expose unified information about the services available via a GEMBus

instance. Information stored in the registry is collected by talking to the local ESB registries or having the

services register themselves. The registry then announces the information globally, providing other services

with the ability to locate and obtain additional information about participating services.

The information model used for the registry must be very easy to extend/modify. Using RDF ontologies as the

common way of describing the information model gives GEMBus this flexibility. The registry has therefore been

designed around a Resource Description Framework [RDF] database. A NoSQL database was also considered,

however, this would have resulted in the inability to reuse de facto standard ontologies

There is a layer surrounding the RDF triple store that can translate to/from RDF graphs and an object-based

representation. This layer allows us to accept, as well as export, the information in many formats. Applications

can push information to the registry, as either JSON [JSON] or RDF/XML and they can PULL information from

the registry as JSON, RDF/XML or HTML. The interface to the outside world is a REST-based web server with

a built-in SAML2 SP.

Note that when this document refers to the GEMBus Registry, it does not imply that only one instance of a

registry is envisaged. It is most likely that there will be more than one. Specific application environment,

organisations and/or National Research Networks might, for different reasons, decide to run their own instance

of a registry. It is expected that these registries will also exchange information with each other.

Each registry is self-contained. There might be references in one registry to objects in another registry, but

there is no support for distributing queries over several registries. Such a system could be built, however, this is

outside of this project’s remit.

3.3.1 The API

In order to facilitate the usage of the registry there must be a well-known application interface (API). This API is

not primarily for human usage but used by applications/services to get access to the information, as well as to

keep the information up-to-date.

3.3.1.1 The REST Interface

REpresentational State Transfer (REST) is a software architecture designed for use in distributed systems that

is based on a set of rules that define how web standards, such as HTTP and URIs, are supposed to be used. It

has been designed to facilitate simple interactions, using the following HTTP operations on objects stored in the

Registry: GET (read), POST (create), PUT (update) and DELETE (delete).

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

16

GET (read)

GET is used to fetch information about an object, in effect, a ‘read’. Depending on the content of the accept

header of the query, this operation can return XML, JSON or HTML.

When used with the type of requested object defined, GET, will retrieve a listing of those objects:

 GET http://<host>/service gets you a list of all the services by identifier (URL).

 GET http://<host>/service/0123456789 will return information about a specific service.

POST (create)

POST is more like an order, and used to create an object in the registry. An RDF graph of the RDF/XML format

is expected in the body of the call. A successful POST will result in a ‘201 Created’ response.

PUT (update)

PUT is used to update the full content of the resource. Note that the object in the store will be exchanged for

this updated information. Incremental updates are not supported. A RDF graph of the RDF/XML format is

expected in the body of the call. A successful update will result in a “200 OK” response.

DELETE (delete)

DELETE will remove the object with the given identifier from the registry.

3.3.1.2 The SPARQL Query Interface

The GEMBus registry also supports SPARQL Protocol and RDF Query Language (SPARQL), a query

language that can be used to search the registry for an object.

The format of a typical query would look like the following:

http://<host>[:<port>]/query?<sparql_query>

Note that the <sparql_query> part must be URL encoded. The response is delivered as raw SPARQLtext.
An example of a sparql_query is (formatted for readability):

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX gembus: <http://geant.net/rdf/gembus#>

PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>

SELECT ?about ?gn ?sn

WHERE {

 ?about rdf:type gembus:Contact .

 ?about vcard:n ?name .

 ?name vcard:given-name ?gn .

 ?name vcard:family-name ?sn .

}

A result to such a query could result in this (using an application/JSON representation).

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

17

[['http://localhost:8087/registry/contact/corky@example.com', 'Corky', 'Crystal'],
[http://localhost:8087/registry/contact/corky@example.com'), 'flo', 'Crystal']]

3.4 Accounting

In current networked architectures, accounting operations, which collect and record information for the relevant

service calls, are implemented to provide necessary input for charging and billing systems. These charging and

billing systems started with the use of simple models, such as time-based, volume-based or flat-pricing models

[Kuhne11] and strove to provide the basic needs, such as completeness, correctness and security of the

collected information, and accountability of the service user.

However, in today’s dynamic, service-oriented environment, where scalability and reliability issues arise,

convergent charging and billing offers new solutions that should also take into consideration the following

desired features [Kuhne11]:

 Cost transparency, which refers to the premise that the user should always be informed about the cost

of a service.

 Online charging, which requires real-time capabilities in order to support prepaid users without incurring

a credit risk for the service provider.

 Easy introduction of new services, which implies a low cost of integrating new services, and is also

important in terms of user acceptance.

 Synchronisation or better consolidation of charging processes, which refers to the case where the

accounting data is generated at different places (for example, across several domains).

 Configurability, which refers to the possibility of controlling the way a user is charged for the consumed

services, and the way to account for corresponding user activities.

From these prerequisites, we further derive the main characteristics of an efficient accounting system:

 Timely provisioning and processing the accounting data.

 Scalable infrastructure to allow fast, low-cost integration of new services.

 Cross-domain support to allow the aggregation of the accounting information for composed services.

 Management support to permit easy configuration of the recorded activities.

The accounting needs of computing services and networking resources have also been considered. The

networking protocol Remote Authentication Dial In User Service (RADIUS) is an example for the networking

domain that provides centralised authentication, authorisation, and accounting management for computers

using a network [Rigney00]. Although the overall cost of an accounting and charging mechanism needs to be

taken into account, the accounting aspect is limited and mainly focuses on the amount of time a networking

connection is active and the amount of traffic created. In the area of grid computing, research has been

targeted at the definition of a common usage record format. This work aims to allow a standardised exchange

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

18

of accounting information, and is driven by the Open Grid Forum (OGF). Two format recommendations [Götze]

have emerged so far:

 The usage record format recommendation, focusing on grid-job-level usage accounting of computing

resources, (i.e. CPU, storage) [Mach06].

 The aggregate accounting record format recommendation intended to wrap high-level accounting view

information for cross-domain accounting in grid environments [Chen06].

Both standards solely address computing resources; additional resources may be added to an extension field

without any standards. Further, more research has been done in order to extend usage accounting with regard

to storage [Scibilia07] and software license [Mallman08], but a standard has yet to emerge.

However, these approaches deal with format-specific services, therefore a generic accounting solution that

could handle arbitrary services and applications is missing. As a result, we propose a more flexible system for

GEMBus that would provide usage accounting in any type of service-oriented environment. Apart from charging

and billing, the information collected by GEMBus’s accounting system could be useful also for trend analysis, or

to assess future service usage such that a necessary enhancement of service capacities can take place before

a bottleneck arises. In addition, such information could be used for auditing purposes, to verify the correct

execution of processes by examining the individual operations of a process. Examples for such use are the

cross-checking of the users accessing a service compared to the list of users that should have access to that

service, or the detection of a violation of policies.

The accounting service solution for the service-oriented environment of GEMBus has to fulfil multiple

requirements and must address the challenges derived from the heterogeneity and the complexity of the

environment. Heterogeneity arises from the various existing types of services, e.g., database services,

computing services, and the multitude of implementations available for each of them. Thus, new services or

enhanced versions of existing ones should be integrated in GEMBus with the lowest cost possible and with a

minimum amount of changes to the accounting infrastructure.

Apart from this issue, the relations with other accounting domains can lead to additional complexity. Users

consuming a service might be part of the local ESB instance or originating from another ESB accounting

domain. In this second case, the accounting service should enable the gathering of the information about

complex services (resulting from the composition of other services). Therefore, the system must correctly

identify the service being used and the consuming user. Being able to track such service interactions and being

able to associate these interactions with the originating user, allows the recording of the accurate accounting

information that would further ensure the appropriate charging and billing. Another typical problem for multi-

domain environments is that different accounting systems possibly use the collected information in different

ways; hence a common format of the accounting data is required [Bhushan01]. In this context, the GEMBus

accounting service should be able to collect performance information and to forward it to a global GEMBus

accounting infrastructure that would aggregate the records from the whole GEMBus platform. Moreover, only

entitled personnel are allowed access to this information for further usage.

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

19

Taking into consideration all of the challenges identified above, we propose a GEMBus accounting solution that

meets the following goals:

 Support cross-domain accounting, thus enabling GEMBus’s multi-domain nature (to be resolved as

part of a future service task).

 Support further enhancements of existing services and integration of new services into the accounting

infrastructure.

 Ensure a scalable accounting infrastructure that is capable of providing its service without restrictions

on the size of the service-oriented environment.

 Provide support for management of the accounting infrastructure, thus enabling the administrator to

easily handle the GEMBus distributed system.

 Integration with a larger infrastructure, with multiple accounting domains (one per GEMBus ESB

instance or domain).

 Exchange accounting information with other domains.

 Ensure the management of the distributed components of the accounting system to create a global

GEMBus accounting system.

 Define a common format for the data records.

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

20

3.4.1 Implementation Aspects

 Figure 3.4 illustrates the architecture of the accounting service for GEMBus

Figure 3.4: GEMBus accounting architecture

Apart from the existing core services of the GEMBus Registry and the Orchestration Engine, in order to provide

accounting capabilities, we have selected the interceptor functionalities provided by the FUSE ESB

implementation [CXFINTER]. The interceptors are Plain Old Java Objects (POJOs) that have access to the

message data before it is passed to the application layer. Depending on the logical functions, the interceptors

are grouped into phases, where each phase is responsible for a specific type of message processing. The

phases are further aggregated into chains, as shown in the figure below.

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

21

Figure 3.5: Apache CXF interceptor chains [ApacheInt]

The chains can be of three types, depending on the message they process: (a) inbound messages, (b)

outbound messages, and (c) error messages.

In order to develop a new interceptor, one needs to specify the phase in which it will run, the chain to which it

will belong, as well as to implement the interceptor’s processing logic. Figure 3.6 illustrates the flow through an

interceptor from the handleMessage() to the handleDefault() in case of an error.

Figure 3.6: Flow through an interceptor [ApacheInt]

The processing logic of an interceptor message is placed in the handleMessage() method, which is called

during normal message processing. If an error occurs during the execution of the interceptor’s chain, the

method handleFault() is called and cleans up any resources used by that interceptor.

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

22

For the proposed accounting system, we will add an interceptor at each service deployed in GEMBus. This

interceptor should track both incoming and outgoing messages from the corresponding service. The interceptor

could be included in the service container information, together with the security component, by adding the

following lines to the beans configuration:

<import resource="classpath:META-INF/cxf/cxf.xml" />

<import resource="classpath:META-INF/cxf/cxf-extension-http-jetty.xml"

<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />

<import resource="classpath:META-INF/cxf/cxf-extension-http binding.xml" />

<bean class="com.progress.pso.helloworld.HelloWorldImpl" id="helloWorldBean"

 <jaxws:endpoint id="helloWorldWS" implementor="#helloWorldBean"

address="http://0.0.0.0:8197/HelloWorldService/">

<jaxws:inInterceptors>

 <bean class="org.apache.cxf.binding.soap.saaj.SAAJInInterceptor" />

 <bean class="neat.geant.gembus.i2cat.accouting.InterceptorCXF"

 </jaxws:inInterceptors>

<jaxws:outInterceptors>

 <bean class="org.apache.cxf.binding.soap.saaj.SAAJInInterceptor" />

 <bean class="neat.geant.gembus.i2cat.accouting.InterceptorCXF" />

 </jaxws:outInterceptors>

 </jaxws:endpoint>

</beans>

The messages captured by these interceptors are the main source of information for the accounting service,

which generates a data log of relevant information that can be extracted from GEMBus. These logs need to be

stored and kept for further analysis at a later time. We have chosen to deploy MongoDB [MongoDB], an open

source, high-performance, schema-free, document-oriented database to store GEMBus logs. MongoDB is

available free under the GNU Affero General Public License. The language drivers are available under an

Apache License. MongoDB has official drivers for many languages and there are also a large number of

unofficial drivers. Furthermore, it supports master-slave replication, where a slave copies data from the master

and that data can only be used for reads or backup (not writes). There is a monitoring plug-in available for

MongoDB and finally, several GUIs have been created by MongoDB’s developer community to help visualise

their data. All of these features make MongoDB well suited to GEMBus requirements.

The data recorded for each log includes the following fields:

 UserID: can be obtained from the token information provided by the security core service.

 Action: the current request made to the service and is traceable in the Action field of the WS-

Addressing specification.

 ServiceID: identifies the service that is being consumed. This information is requested by the GEMBus

registry.

 Timestamp: represents the time when the service is consumed, obtained for the local time of the

machine.

http://en.wikipedia.org/wiki/Affero_General_Public_License
http://en.wikipedia.org/wiki/Apache_License

Consolidation of GEMBus Core Services

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

23

 MessageID: a unique identifier for the message transaction extracted from the MessageID field of the

WS-Addressing specification.

 From: an identifier that indicates which service sent the request. This information is useful, especially

when it is necessary to trace service interactions.

As mentioned above, the GEMBus accounting solution relies on the use of WS-Addressing [WSADDRESS], a

standardised way of including message routing data within SOAP headers. Instead of relying on network-level

transport to convey routing information, a message utilising WS-Addressing may contain its own dispatch

metadata in a standardised SOAP header. The addressing information relating to the delivery of a message to

a web service is communicated through the Message Addressing Properties, and includes the following:

 Message destination: URI.

 Source endpoint: the endpoint of the service that dispatched this message (EPR).

 Reply endpoint: the endpoint to which reply messages should be dispatched (EPR).

 Fault endpoint: the endpoint to which fault messages should be dispatched (EPR).

 Action: an action value indicating the semantics of the message (may assist with routing the message)

URI.

 Unique message ID URI.

 Relationship to previous messages (A pair of URIs).

The use of WS-Addressing fulfils the requirements of the GEMBus accounting service and is also suitable

because it is a standard specification. As a result, it will be important for services deployed in GEMBus to

enable the use of WS-Addressing.

3.5 Messaging Infrastructure

The GEMBus messaging service is a common component of all GEMBus installations or hosting platforms,

which is based on an ESB that provides all necessary functionalities for services interaction and integration in

the SOA.

The GEMBus messaging infrastructure is built on top of the standard Apache/FUSE messaging infrastructure

that includes the following components [ApacheActiveMQ], [ApacheCamel]:

 FUSE Message Broker (Apache ActiveMQ) messaging processor.

 FUSE Mediation Router (Apache Camel) normalised message router.

These two components provide all necessary functionality for GEMBus component services integration and

interaction, including inter-domain/inter-ESB communication. Actual service interconnection is defined by

configuring the Message Broker and Message Router, as illustrated in Figure 4.1 and described in Section 4,

GEMBus/ESB Testbed.

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

GEMBus/ESB Testbed

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

24

4 GEMBus/ESB Testbed

To demonstrate the GEMBus/ESB basic functionalities and experiment with inter-domain inter-services

messaging, the GEMBus/ESB testbed has been created at University of Amsterdam (UvA). The testbed is

implemented as a Cloud Platform as a Service (PaaS), where user services are deployed in preconfigured

virtual machine (VM) with a preinstalled GEMBus/ESB platform. Besides supporting GEMBus component

services development and integration, the testbed aims to facilitate GEMBus dissemination and wider adoption

among GÉANT and NREN users.

Figure 4.1 shows the testbed structure and implementation details. The lower-layer infrastructure uses

OpenNebula VM management environment. Each VM can run either a GEMBus instance or a FUSE ESB

[FUSEESB] instance that may host one or more services. Each VM with an installed GEMBus/ESB

environment can be considered as a single domain, alternatively, a few VM can belong to one domain.

Service interconnections are realised based on such common GEMBus/ESB functional components as

Message Broker (based on Apache ActiveMQ) and Message Router (based on Apache Camel). Component

services can be deployed in a GEMBus/ESB environment using VMs with preinstalled and pre-configured

GEMBus/ESB instances. Final services interconnection topology can be created by pre-configuring the

Message Broker and the Message Router at each GEMBus/ESB instance or dynamically changing their

configuration after deployment and during run-time, which is supported by GEMBus messaging infrastructure.

Communication between GEMBus domains is carried out either over the underlying transport network

infrastructure or using dedicated network infrastructure, which is provisioned as Network as a Service (NaaS).

In the latter case, NaaS can be controlled via a dedicated GEMBus service. Current testbed implementation

uses only underlying transport network infrastructure.

Figure 4.1: Testbed for GEMBus/ESB-based services composition (using Cloud PaaS service model)

GEMBus/ESB Testbed

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

25

Figure 4.2 below, illustrates topological relations between services in the testbed that includes inter-

domain/inter-GEMBus signal and data links and control links between VMs and testbed PaaS infrastructure

controller.

Figure 4.2: Testbed data and control interconnection topology

4.1 Example Demo Scenario (Multi-Domain User Services

Deployment)

This section provides an example of the messaging infrastructure configuration used in the GEMBus testbed

demonstration at the International Conference for High Performance Computing, Networking, Storage and

Analysis (SC11).

Figure 4.3 presents services composition workflow for runtime demo using three source services generating

samples of the time variable signal: rectangular pulse function, sinusoidal signal, and relaxation (or “saw”)

generator. These basic services can be composed in different ways by using message routing function and

processor service.

GEMBus/ESB Testbed

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

26

Figure 4.3: Demo scenario services composition

4.2 User Services Deployment

GEMBus user services can be deployed remotely by uploading a new service bundle to the deployment folder,

which has a standard location $GEMBus/deploy/. Currently, this operation requires manual configuration, but

in the future, it can be done with via a special user interface or client using either web browser or Eclipse client.

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

27

5 Service Characterisation and Deployment

One of the declared objectives of GEMBus is to ease the integration of existing service platforms, both in the

GÉANT infrastructures and in the GÉANT user communities. The goals are to:

 Simplify the process of gaining access to those services by other user communities worldwide.

 Allow other services to leverage their resources to each other.

 Provide homogeneous mechanisms to ensure the evolution of the services.

 Simplify the integration with similar or related platforms in other spheres (commercial, governmental,

etc.).

In order to achieve these goals, GEMBus worked on a common definition for service characterisation and thus

let other services know how they should be built in order to fit within GEMBus. This was strengthened by the

definition of reference services, as well as a brief guide to validate a service against GEMBus requirements.

5.1 Canonicalisation and Reference Services

5.1.1 Canonicalisation

Canonicalisation defines the procedure that has been followed in order to collect specifications for the different

environments in which GEMBus is being installed. This data was collected through analytical surveys that were

exchanged among the partners. Results showed that, in most cases, GEMBus has been installed in Linux-

based servers. In the current version of GEMBus, the ESB layer is powered by the FUSE ESB and Tomcat with

an AXIS SOAP [ApacheAXIS] container were used as application servers.

Surveys were also collected about the environment in which each partner was developing a service, a module

or an interceptor. Results showed that the FUSE-Eclipse plug-in was used for the ESB development.

5.1.2 Reference Services

Reference services define a set of APIs that should be followed in order to be connected to GEMBus platform.

Reference Services are the minimum pieces of code required in order to adapt external APIs for use on the

GEMBus platform. This set of classes can be new modules, new interfaces, adaptors and also interceptors that

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

28

control the communication between GEMBus and an external user. An external user could be anything from a

single user to a multi-domain platform.

As previously described, in order to support a multi-domain ESB/Bus federation, the GEMBus has developed

the following core services:

 A Federated Service Registry, which is responsible for “talking” to the local registries and announcing

the services available globally, allowing them to be located and obtaining additional information about

the services.

 A Service Repository, which is responsible for storing service bundles, and allowing their deployment

on the local instance of GEMBus.

 A Security Token Service, which is built as WS-Trust implementation, which verifies and translates

security tokens to allow the authentication of requesters in federated multi-domain environment.

Requesters can use these tokens to request access to a service; the service then checks the validity of

the token before granting access to the requester.

 A Composition Service that enables the composition of services. It can be offered as a centralised

service via the orchestration engine that is typically part of an ESB or as an on-demand deployed

service, by downloading and deploying the necessary components.

 The Accounting Service, which is the service that provides configurable and aggregated access to the

GEMBus logging service to support services such as monitoring, auditing, diagnostics and

troubleshooting.

A developer will face a number of issues while trying to connect to each of these services during Reference

Service implementation. If a new external service needs to be integrated with GEMBus, it should communicate

with the corresponding service interceptor. There are two service interceptors, the messaging and the registry,

which are prerequisite implementations for every new user/platform that wishes to connect to GEMBus.

Figure 5.1 details the different Service Interceptors connect to the corresponding Core Services and the

Reference Container.

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

29

Figure 5.1: Service interceptor, core service and reference services container connections

5.2 Service Validation

The design and development of a complex architecture, as proposed in GEMBus, involves the use and

experimentation with multiple tools for the implementation and testing of the newly proposed services. The

division of tasks in different work areas involves different approaches to resolving problems. At this point it is

helpful to pool the current approaches from all the developers in order to select the best mechanism with which

to validate the services developed within the architecture.

GEMBus plans to compile and incorporate a knowledge base for sharing experiences and solutions from

developing, debugging and validation tasks. In addition, this information is expected to serve as a source of

information for future GEMBus developers.

For debugging and validation of services and the GEMBus architecture (in addition to previous design work),

we have used different tools to monitor all levels: from the network layer (e.g. Wireshark) to the level of

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

30

communications between bus services (e.g. soapUI). All this work on tools and plug-ins will be compiled and

published within the GEMBus cookbook, as well as be included as part of the final results of the project.

Although the central part of the work is focused on validation services, the idea is to use this knowledge sharing

to produce guidelines on different development tools such as Eclipse or other integrated development

environment (IDE), or on other tools such as the Eclipse plug-in for GEMBus, which is used by our developers.

5.3 Service Repositories

The GEMBus Service Repository is based on the OSGi Bundle Repository (OBR), which is a proposal for the

specification internally referred to as RFC-0112 in the OSGi Alliance

[OSGi Bundle Repository]. The FUSE

ESB’s Apache Felix OSGi Bundle Repository provides a service that can automatically install a bundle with its

deployment dependencies from a bundle repository, thereby simplifying the use and deployment of available

bundles. The OBR RFC-0112 proposed specification defines an XML format for repositories of OSGi bundles

and an OSGi framework service to access and use a repository. The GEMBus Service Repository

implementation has a modular architecture and contains the listed blocks:

 Service repository daemon: allows for easy start/stop/restart of all the modules and creates a Linux
daemon as well as provide logging and configuration.

 XML refresher (BIndex tool): module that uses the BIndex tool [OSGi Bindex] to periodically
generate the XML description file.

 Website interface: module that serves the Web GUI interface.

 REST interface: module that serves the RESTful interface.

 Repository storage: module that stores the bundle binaries.

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

31

Figure 5.2 illustrates the architecture of the GEMBus Service Repository.

Figure 5.2: GEMBus Service Repository architecture

All the modules are implemented in Python, except from the BIndex tool, which has been included as a Java

program.

The OBR repository file is an XML-based representation of bundle meta-data. It contains information of the

provided capabilities and required dependencies. As previously mentioned, the detailed description of RFC-

0112, the OBR meta-data format is available to download from the OSGi website [OSGi Bundle Repository].

A resource can provide any number of capabilities. A capability is a typed set of properties, such as:

<capability name='package'>

 <p n='package' v='org.foo.bar'/>

 <p n='version' t='version' v='1.0.0'/>

</capability>

A requirement is a typed LDAP query over a set of capability properties

 <require extend='false' multiple='false'

 name='bundle' optional='false'

 filter='(&(symbolicname=perfsonarNMWGAdapter)(version>=0.0.0))'>

Require Bundle perfsonarNMWGAdapter; 0.0.0

</require>

The OBR XML description file can be generated using the BIndex tool with a “-d” parameter and specified

path to the already compiled bundle binaries. Below, you can see an example of such generating process.

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

32

java -jar bindex.jar –d /.m2/repository/net/geant/gembus/ # command

for generating the XML

cat repository.xml # content of the XML

<?xml version='1.0' encoding='utf-8'?>

...

<resource id='perfsonarCLMPAdapter/0.0.1.SNAPSHOT' ... >

 <description>

 Adapter for perfsonar command line measurement point services

 </description>

 ...

 <capability name='bundle'>

 <p n='manifestversion' v='2'/>

 <p n='presentationname' v='Perfsonar Command Line Measurement Point'/>

 <p n='symbolicname' v='perfsonarCLMPAdapter'/>

 <p n='version' t='version' v='0.0.1.SNAPSHOT'/>

 </capability>

 ...

The GEMBus Service Repository provides an XML Refresher module that automatically generates the XML

description file to the current contents of the bundles in the repository.

The FUSE ESB Kernel console provides interactive access to OBR using the “obr” subshell commands. These

commands can be used to deploy user bundles, following the creation of a bundle repository metadata file.

karaf@root> features:install obr # installing the new

feature - repository client

karaf@root> obr:addUrl file://esb/repository/repository.xml # adding new url

to XML description file

karaf@root> obr:list # listing the available

bundles in repository

…

Perfsonar Command Line Measurement Point (0.0.1.SNAPSHOT)

Perfsonar NMWG Adapter (0.0.1.SNAPSHOT)

Perfsonar RRD Measurement Archive (0.0.1.SNAPSHOT)

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

33

The repository client has an access to a federated set of repositories via the Repository Admin service.

Figure 5.3: Repository client

The REST interface and website interface are implemented as an application for the WSGIService

framework [WSGIService] and are run as a module for Service Repository daemon.

The REST interface is in the implementation stage and will provide all the functionalities to deploy and

discover list bundles and to get detailed repository resource information. It will also allow the obtaining

information on capabilities, requirements and other meta-data of given bundle or package.

Below, you can see the HTTP REST protocol specification of the Service Repository REST interface.

HTTP message, method and URI Message Content Abstract Message

Bundle push / deploy

HTTP Request

PUT http://gembus.geant.net/repository/bundle/{bundle-id}

Bundle JAR Bundle Push

HTTP Response

 200 OK

 201 Created

 400 Bad Request

 401 Unauthorized

 503 Service Unavailable

– Bundle Push Result

HTTP Request

GET http://gembus.geant.net/repository/bundle/{bundle-id}

-- Bundle Deploy
Request

HTTP Response Bundle JAR Bundle Deploy
Response

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

34

HTTP message, method and URI Message Content Abstract Message

 200 OK

 404 Not Found

Bundle discovery

HTTP Request

GET http://gembus.geant.net/repository/bundle

– Bundle List Request

HTTP Response

 200 OK

 404 Not Found

XML described by
bundle-
advertisement XSD

Bundle List
Response

HTTP Request

GET http://gembus.geant.net/repository/bundle/{bundle-id}/capabilities

GET http://gembus.geant.net/repository/bundle/{bundle-id}/requirements

– Bundle Capabilities

and Requirements

Request

HTTP Response

 200 OK

 404 Not Found

XML described by

bundle-

advertisement XSD

Bundle Capabilities

and Requirements

Response

Bundle information get / modify

HTTP Request

GET http://gembus.geant.net/repository/bundle/{bundle-id}/description

GET http://gembus.geant.net/repository/bundle/{bundle-id}/size

etc.

– Bundle Information

Request

HTTP Response

 200 OK

 404 Not Found

XML described by

bundle-

advertisement XSD

Bundle Information

Response

HTTP Request

POST http://gembus.geant.net/repository/bundle/{bundle-id}/description

POST http://gembus.geant.net/repository/bundle/{bundle-id}/size

XML described by

bundle-

advertisement XSD

Bundle Information

Modify Request

HTTP Response

 200 OK

 201 Created

 400 Bad Request

 401 Unauthorized

 503 Service Unavailable

-- Bundle Information

Modify Response

Table 5.1: HTTP REST protocol specification

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

35

5.4 Flagship Applications: F-Ticks

Following the demonstration of GEMBus’s potential presented in Deliverable DJ3.3.2, Composable Network

Services Framework and General Architecture: GEMBus, the next step has been to find real-world applications

to integrate with GEMBus services and show the initial functionalities of the framework to other interested

partners in order to promote the collaboration and disseminate the results obtained throughout the project.

The F-Ticks service has been developed within GN3-JRA3-T1, and implemented by GN2-SA3-T2 (eduroam). It

is a data collection service designed for a very simple implementation at eduroam participating organisations.

The service consists of two main elements: a data publisher, which sends a record of every eduroam

authentication attempt, and a central data collector, which reads all records and stores them in a database.

Access to the database and data presentation are separate tasks. This original F-Ticks uses Syslog protocol for

data logging as the transport mechanism for messages. Syslog is easily coupled with authenticating RADIUS

servers, which makes the publisher setup as straightforward. The ease of publisher setup is absolutely crucial

since the service can be successful only if it is widely implemented.

5.4.1 Adding F-Ticks to GEMBus

The addition of F-Ticks to GEMBus use cases has grown from a number of reasons:

 The F-Ticks message feed could be published as a simple and universally accessible data stream

within GEMBus, for the use of parties studying eduroam statistics.

 Composition of complex services is the main purpose of GEMBus, but it has also been observed that

the complexity of the service itself may obscure the details of the GEMBus integration, therefore F-

Ticks, which is easy to comprehend, can serve as a good example of a complex composite service.

 The F-Ticks example must use all core components of GEMBus: translation of a standard service

protocol (Syslog) into GEMBus messages, the publish/subscribe service, the repository (for finding F-

Ticks, publishing the endpoint and comprehending the output), security services if the access should

be restricted or if the level of data anonymisation is dependent on access rights.

 As GEMBus grows in popularity it may be natural to use it as a transport mechanism, even for F-Ticks.

This could be done either by using the existing protocol translators locally at the authenticating server

or even to implement direct GEMBus hooks into popular RADIUS servers.

The current GEMBus implementation has created the interface to the original F-Ticks service, where Syslog

messages are fed into the GEMBus component, transformed into GEMBus messages and published inside the

bus. Local subscriber services have also been implemented and will be turned into the final example when the

GEMBus composition is ready for use.

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

36

It must be clearly stated that it has never been a goal to produce a mature F-Ticks statistics analyser. Such a

tool is out of scope of this activity. The example subscriber is expected to serve as a “Hello World” application,

which can be used as the starting point for a number of specialised consumer systems.

5.4.2 Implementation

Figure 5.4: F-Ticks framework

Implementation of the F-Ticks Syslog listener bundle is based on Apache Camel framework and on the

definition of routing rules using Java DSL. The bundle was created using one of Camel Maven archetypes:

camel-archetype-java, which is designed to create a new Maven project for Camel routes.

The default Camel class for the definition of routes, MyRouteBuilder, implements the following actions:

 Reads syslog messages from the defined endpoint using camel-mina transport component

 (udp://: //localhost:10514).

 Uses SyslogDataFormat and SyslogMessage classes from camel-syslog to process messages.

 Unmarshals syslog message using SyslogDataFormat class.

 Processes a message as a F-Ticks message using FTicks class, which analyses message fields and

constructs FTicks class data filled with the appropriate information from message.

 Marshals F-Ticks data to JSON format.

 Sends JSON data are sent using Apache ActiveMQ to a JMS Topic (multiple consumers can get the

message) activemq:topic:fticks.

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

37

The Camel Context configuration in the camel-context.xml file defines the activemq bean.

FTicks class handles F-Ticks data:

 Sets appropriate data fields.

 Uses org.apache.camel.component.syslog.SyslogMessage class methods to get log message,

time stamp, remote address, etc.

5.4.3 Result

FTicks syslog listener bundle forwards all received F-Ticks messages to the established ActiveMQ endpoint,

using publish-subscribe logic.

FTicks object contains the following fields:

 remoteaddress

 timestamp

 fticksid

 fticksrealm

 fticksviscountry

 fticksvisinst

 ftickscsi

 fticksresult

Example result messages:

{

"gembus.fticks.data.FTicks":

{

"remoteaddress":"\/127.0.0.1:38358",

"timestamp":"2011-10-12 10:24:30.911 CEST",

"fticksid":"F-TICKS\/eduroam\/1.0",

"fticksrealm":"wlan.mnc003.mcc260.3gppnetwork.org",

"fticksviscountry":"PL",

"fticksvisinst":"BIAMANTLS",

"ftickscsi":"10:f9:ee2d532e40c36aa6084be5c10ef2220",

"fticksresult":"FAIL"

}

}

{

"gembus.fticks.data.FTicks":

{

Service Characterisation and Deployment

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

38

"remoteaddress":"\/127.0.0.1:38358",

"timestamp":"2011-10-12 10:26:12.958 CEST",

"fticksid":"F-TICKS\/eduroam\/1.0",

"fticksrealm":"gumed.edu.pl",

"fticksviscountry":"PL",

"fticksvisinst":"TORMANTLS1",

"ftickscsi":"00:1f:3c4ca8815e418795c3b06fceec9aef3",

"fticksresult":"OK"

}

}

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

39

6 Current General Status and Future Work

As of January 2012, GEMBus is in a beta version; there are some demonstrators available, but there is not yet

a complete GEMBus testbed that can be offered.

A complete GEMBus system could be deployed in a number of different ways. For instance, all GEMBus core

components could be offered by a single domain or different domains could operate some of the core

components. Figure 6.1 depicts a possible scenario in which GEMBus could be deployed.

Figure 6.1: Using GEMBus in a multi-domain scenario

Current General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

40

6.1 Further Developments

It is important to stress that GEMBus is a research project, and as such, is still under development. However,

GEMBus is following a clearly defined development path.

During the next phase of GN3 (2012–13), development will focus on offering a test bed for GEMBus that will be

available to all project partners, as well as to those communities that have expressed an interest in testing

GEMBus, such as the CLARIN and eScience Projects. Meeting this objective is not easy since it requires the

integration of components that have been developed separately. We are in contact with the company behind

the main integration bus we are using, FUSESource (detailed in Section 6.3), in order to facilitate the task of

putting together the components, as well as get a deeper knowledge of that product.

In addition to the pilot, a cookbook is currently being written by the GEMBus team and will be available to the

community in the spring of 2012, which will facilitate the usage and wider take-up of GEMBus.

6.2 The GEMBus Cookbook

The GEMBus cookbook provides guidance for GN3 users on the use of GEMBus, as well as deploying new

services to expand its use. This document explains not only the nature and operation of GEMBus but also

offers a step-by-step tutorial for using and adding new services.

The cookbook document comprises six chapters, covering all necessary aspects of the GEMBus platform.

Chapter 1 provides an introduction to the GEMBus platform, as well as instructions on how to install GEMBus

onto a user’s domain.

Chapter 2 deals with the services offered on the GEMBus platform, and more specifically, defines GEMBus

services, and presents the GEMBus Core Services 2, a set of services that provide direct support to any

service to be deployed in GEMBus. The core services that have been developed throughout the GN3 are:

 The Service Registry, which is responsible for storing service bundles, and allows their deployment on

the local instance of the GEMBus.

 The Messaging Service is responsible for service interaction and integration with the key aspect of

message transparency (whereby the sender may elect to leave some aspects of the message

completely visible to potential readers, while encrypting other parts of the message for a trusted subset

of readers).

 The Composition Service, which enables the composition of services.

 The Accounting Service that provides configurable and aggregated access to the GEMBus logging

service to support monitoring, auditing, diagnostics and troubleshooting.

Current General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

41

 The Security Token Service, which is built as WS-Trust implementation, issues, verifies and translates

security tokens to allow the authentication of requesters in a federated, multi-domain environment.

In addition to the above, this chapter will also provide the reference service framework, as derived from the

Reference Service Workshop. This workshop has been set up between the GRNET, UvA and UMU and with

the aim to define the reference framework.

Chapter 3 illustrates how to access the GEMBus platform. It will present a general overview of how to use

GEMBus Core Services with Reference Services. The material for this chapter will be produced as an outcome

of the Reference services workgroup.

Chapter 4 is the main step-by-step guide for developers to create new services. It presents the pre-

requirements for creating a new service, and setting up a GEMBus environment. The pre-requirements have

been gathered during the canonicalisation task, and will be presented in specific terms of operating and

programming environment used. Moreover, it will provide interface details for the newly created service to

ensure compatibility with the Reference Framework. Such alignment with the Reference framework will

guarantee access to the GEMBus core services.

After creating a new service, developers will have to integrate it with the GEMBus platform, as described in

detail in Chapter 5. Because of this, the F-Ticks service could be included as a canonical example for

developing and deploying a new service to the GEMBus platform. Moreover, a guide for validating a service will

be included based on the survey / questionnaire distributed by RedIRIS.

Finally, Chapter 6 provides several answers to frequently asked questions (FAQ). GRNET is examining the

idea of distributing a questionnaire to developers and users of the GEMBus platform, which could be used to

discover common problems faced during any step of installing GEMBus, accessing its services, and developing

and deploying new services.

Overall, it is our belief that the GEMBus cookbook will provide a useful guide for users and developers of the

GEMBus platform.

6.3 FUSE Source Collaboration Proposal

As mentioned in the previous sections of this document, GEMBus has developed the GEMBus Core

Components, of which the GEMBus Federated Service Registry or simply the GEMBus Registry is one of the

most vital.

The Registry communicates with local registries (operating in the local domains) and announces the global

availability of a service.

After an evaluation of the available ESBs (done at the beginning of the project in 2009), the GEMBus team

selected FUSE as the preferred ESB platform. It is important to note that the FUSE ESB is widely used in the

Current General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

42

research community, for instance, CERN is also using it to run the operational grid activities of the Large

Hadron Collider.

Using FUSE as the preferred ESB base for GEMBus development, has worked pretty well in most of the

aspects, however, some problems have emerged while federating different ESBs. To achieve its aim the

GEMBus registry would have to be able to access to the information stored in the registries of the participating

ESBs.

Not surprisingly, the registry in a FUSE ESB is geared to be used within one instance of the FUSE ESB, and

therefore holds information in a format that is not suitable for exposure to other ESBs, especially if the other

ESB is not a FUSE ESB (which should be considered to be the assumption in GEMBus).

To solve this problem, the GEMBus team approached a commercial company named FUSESource that offers

support for FUSE ESB (which is an open source product). FUSESource clearly has more in-depth knowledge

about FUSE than the GEMBus team; furthermore, FUSESource involvement would ensure that the

functionalities to enable the export of data from the FUSE registry is permanently added into the FUSE product.

FUSESource has acknowledged the issues, and would (upon compensation), be able to solve it.

At the time of writing there are ongoing discussions between the GEMBus team and FUSESource, to quantify

the work and investigate the feasibility of a possible collaboration and advance GEMBus developments.

In the absence of an agreement with FUSESource, the GEMBus team would be able to develop an API to

export data stored in the local ESB registries to the GEMBus registry, however, this solution would not be

desirable without the support of the FUSE community. In fact, the GEMBus team would have to spend a

considerable amount of time developing such an API, which would be valuable only if FUSE ESB would accept

the development and integrate it as part of future FUSE ESB releases. The involvement of FUSESource would

enable this process.

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

43

Appendix A Implementation Details and Code

A.1 STS Configuration

The Security Token Service configuration is based on a XML file, where it can be configured all the classes

used by the STS and other important parameters. An example of STS configuration file is shown below.

The STS configuration includes elements for:

 Issuer name in generated tokens.

 Mode: STS, TTS, AS.

 Default token TTL.

 Keys used to verify and sign tokens.

 Supported token providers.

 Policy engines (PDPs) applied for authorisation.

The following lines show an example of a STS config file:

<GemSTSxmlns="urn:geant:gembus:security:config:0.1STSName="urn:geant:gembus:security:sts:gemsts"

TokenTTL="1800">

 <KeyHolderClassName="net.geant.gembus.security.key.impl.KeyHolderImpl”>

 <Property Name="KeyStoreURL" Value="/security/gn3-sts.jks" />

 <Property Name="KeyStorePassword" Value=”stspassword" />

 <Property Name="PrivateKeyAlias" Value=”stsprivkeyalias" />

 <Property Name="PrivateKeyPassword" Value=”stsprivkeypassword" />

 <Property Name="PublicKeyAlias" Value=”stspubkeyalias" />

 </KeyHolder>

 <RequestHandler>

 net.geant.gembus.security.wstrust.GemRequestHandler

</RequestHandler>

 <PolicyEngines>

 <PolicyEngine Id="InternalPolicyEngine”

ClassName="net.geant.gembus.security.wstrust.policy.xacml.XACMLPolicyEngine">

 <Property Name="PolicyFile" Value="/policy/GemSTSPolicy.xml" />

 <Property Name="Resource" Value="GemSTS" />

 <Property Name="Action" Value="authorize" />

 </PolicyEngine>

 <PolicyEngine Id="ExternalPolicyEngine”

ClassName="net.geant.gembus.security.wstrust.policy.xacml.XACMLRemotePolicyEngine">

 <Property Name="PDPEndpoint” Value="http://155.54.210.139:9999/axis2/services/PdpService" />

 <Property Name="Resource" Value="SampleServer" />

Implementation Details and CodeCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

44

 <Property Name="Action" Value="access" />

 </PolicyEngine>

 … More policy engines used by the token providers …

 </PolicyEngines>

<TokenProviders>

 <TokenProvider

ProviderClass="net.geant.gembus.security.wstrust.token.providers.saml.v2.SAML2TokenProvider”

TokenType="urn:oasis:names:tc:SAML:2.0:assertion" TokenLocalName="Assertion”

TokenNS="urn:oasis:names:tc:SAML:2.0:assertion" PolicyEngine="ExternalPolicyEngine" />

 <TokenProvider

ProviderClass="net.geant.gembus.security.wstrust.token.providers.gembus.GemTokenProvider”

TokenType="urn:geant:gembus:security:token:1.0:gemtoken” TokenLocalName="GemToken"

TokenNS="urn:geant:gembus:security:token:1.0:gemtoken" PolicyEngine="InternalPolicyEngine"/>

… More token providers …

 </TokenProviders>

 <ServiceProviders>

 <ServiceProvider Name=“http://www.geant.net/sp1”

TokenType="urn:geant:gembus:security:token:1.0:gemtoken" />

 <ServiceProvider Name=“http://www.geant.net/sp2”

TokenType="urn:oasis:names:tc:SAML:2.0:assertion" />

 … More known service providers …

 </ServiceProviders>

 <IdentityProviders>

 <IdentityProvider Name="http://www.geant.net/idp1">

 <KeyHolderClassName="net.geant.gembus.security.key.impl.KeyHolderImpl">

 <Property Name="KeyStoreURL" Value="/security/idps.jks" />

 <Property Name="KeyStorePassword" Value=”idpspw" />

 <Property Name="PublicKeyAlias" Value=“idp1" />

 </KeyHolder>

 </IdentityProvider>

 … More trusted identity providers …

</GemSTS>

The most salient configuration elements are:

 GemSTS: the root element. It defines the properties that allow the STS administrator to set default

values:

○ STSName: a String representing the name of the security token service. If not specified, the default

GemSTS value is used.

○ TokenTTL: the token lifetime value in seconds. If not specified, the default value of 3600 (1 hour) is

used.

 KeyHolder: this element and all its sub-elements are used to configure the keyholder that will be used

by GemSTS to sign and validate tokens. The implementation provided in the library uses the Java

keystore as backend. Properties such as the keystore location, its password, the signing (private key)

alias and password and public key alias are all configured within this element.

 RequestHandler: this element specifies the fully qualified name of the WSTrustRequestHandler

implementation to be used.

 TokenProviders: this element specifies the SecurityTokenProvider implementations that must be

used to handle each type of security token and the PolicyEngine used by each provider. In the

example implementations, there are two providers: one that handles

urn:oasis:names:tc:SAML:2.0:assertion tokens and uses a remote XACML policy engine, and

Implementation Details and CodeCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

45

another that handles type urn:geant:gembus:security:token:1.0:gemtokentokens, and uses an

internal XACML policy engine.

 ServiceProviders: this element specifies the token types that must be used for each service provider

(the Web service that requires a security token). When a WS-Trust request does not contain the token

type, the WSTrustRequestHandler must use the service provider endpoint to find out the type of token

that must be issued. First, the handler queries the GEMBus registry to obtain the token type for the

service provider. If the GEMBus registry does not contain the token type for the service provider, then

the ServiceProviders configuration section is used.

 IdentityProviders: this element specifies the identity providers in which the STS trusts. Any security

token issued by these identity providers can be used to obtain a new security token. Each identity

provider contains a KeyHolder element, where it is specified the place where to obtain the public key

that will be used to validate the token signature. Properties such as keystore location, its password and

the public key alias are configured in this section. Here the private key alias and password are not

necessary, because the token providers only need the public key in order to validate the token.

 PolicyEngines: this element specifies the policy engines that can be used by the token providers when

the tokens are validated. The library contains two implementations of the PolicyEngine interface. The

XACMLPolicyEngine requires properties like the policy file and the default values for resource and

action in order to can perform a XACML request, whereas the XACMLRemotePolicyEngine requires

the PDP endpoint besides the default values for resource and action to perform a XACML request using

SOAP.

All these elements are used by the STS and its components. The WSTrustRequestHandler uses the

TokenTTL when no Lifetime has been specified in the WS-Trust request. It creates a Lifetime instance that

has the current time as the creation time and expires after a specified number of seconds.

The KeyHolder is used by the GemSTSConfiguration to access the configured keystore and provides the

STS private and public key and the identity providers’ public key to the SecurityTokenProvider when it needs

to sign or validate a security token.

The PolicyEngines element contains the policy engines that can be used by the token providers to take an

authorisation decision on the security token.

The TokenProviders elements used by the GemSTSConfiguration to obtain the SecurityTokenProvider

that must be used to handle a WS-Trust request that specifies the token type. The WSTrustRequestHandler

calls the getProviderForTokenType(String tokenType) method of STSConfiguration to obtain a reference

to the appropriate SecurityTokenProvider.

The ServiceProviders element is used by the GemSTSConfiguration to obtain the SecurityTokenProvider

that must be used to handle a WS-Trust request that does not specify the token type. In this case, the request

message must identify the service provider endpoint. The GemSTSConfiguration first locates the token type

of the service provider using the service provider name defined in the ServiceProvider elements, and then

locates the SecurityTokenProvider using the TokenProvider’s elements. The WSTrustRequestHandler

calls the getProviderForService (String serviceName) method of STSConfiguration to obtain a reference to

the appropriate SecurityTokenProvider.

Implementation Details and CodeCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

46

The IdentityProviders element is used by the GemSTSConfiguration to obtain the public key of an identity

provider. The SecurityTokenProvider calls the

getIdentityProviderPublicKey(StringidentityProviderName) method of STSConfiguration to obtain a

reference to the identity provider public key. The provider will use the public key to validate the signature of the

security token within the validateToken method of SecurityTokenProvider.

A.2 Message Broker Configuration

The listing below provides example of Message Broker configuration using static IP addresses. According to

the services composition workflow, the Message Broker, containing Source Service 1 and Source Service 2

queues, needs to register with Message Broker containing Processor Service 2.

<blueprint ...>

 <broker ...>

 <networkConnectors><networkConnector name="ncNeptue“

 uri="static:(tcp://192.168.56.102:62001)“ duplex="true">

 </networkConnector></networkConnectors>

 <transportConnectors>

 <transportConnector name="openwire" uri="tcp://localhost:61616"/>

 <transportConnector name="stomp" uri="stomp://localhost:61613"/>

 </transportConnectors>

 </broker>

 <bean id="activemqConnectionFactory"

 class="org.apache.activemq.ActiveMQConnectionFactory">

 <property name="brokerURL" value="tcp://localhost:61616" />

 </bean>

 <service ref="pooledConnectionFactory" interface="javax.jms.ConnectionFactory">

 <service-properties>

 <entry key="name" value="localhost"/>

 </service-properties>

 </service>

</blueprint>

Implementation Details and CodeCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

47

An example Message Router configuration in beans.xml, and a Message route description in Java Domain

Specific Language (DSL) is provided below.

Message Broker configuration in beans.xml

<beans ….>

<bean id="jms" class=

"org.apache.camel.component.

jms.JmsComponent">

 <property name="connectionFactory">

 <bean class= "org.apache.activemq.

ActiveMQConnectionFactory">

 <property name="brokerURL"

value="tcp://localhost:61616"/>

 </bean>

 </property>

<route>

 <from uri="jms:S1_Out"/>

 <to uri="jms:Sp1_In"/>

</route>

<route>

 <from uri="jms:S2_Out"/>

 <to uri="jms:Sp1_In"/>

</route>

<route>

 <from uri="jms:S3_Out"/>

 <to uri="jms:Sp2_In"/>

</route>

<route>

 <from uri="jms:Sp1_Out"/>

 <to uri="jms:Sp2_In"/>

</route>

</camelContext>

</beans>

Message Router configuration in Java DSL:

from(“jms:S1_Out”).to(“jms:S3_In”);

from(“jms:S2_Out”).to(“jms:S3_In”);

from(“jms:S3_Out”).

bean(LogSignal.class, “log(${body})”);

Figure A.1: Message router configuration

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

48

Appendix B Installation of Additional Composition
Components

B.1 Installation of Testing and Debugging Components

There are some components that can be handy for testing and debugging. They can be easily installed issuing:

karaf@root> features:install ode-commands

karaf@root> features:install examples-ode-helloworld

karaf@root> features:install examples-ode-ping-pong

It is highly recommended to use the provided Eclipse Plug-in for GEMBus to interact with the server during the

rest of the process. To install and activate all the features needed by the Plug-in a simple change must be done

on one configuration file $GEMBus/etc/config.properties ($GEMBus points to the GEMBus installation root

directory) replacing the line:

org.osgi.framework.bootdelegation=org.apache.karaf.jaas.boot,sun.*,com.sun.*,javax.tr

ansaction,javax.transaction.*

with the following instruction:

org.osgi.framework.bootdelegation=org.apache.karaf.jaas.boot,sun.*,com.sun.*,javax.tra

nsaction,javax.transaction.*,javax.xml.stream,javax.xml.stream.*

After this change, configuration must be updated or the server restarted.

Next, proceed to the manual installation of the deployment-api bundle. This can be done copying the file

deployment-api-2.0.0.jar that can be obtained in the GEMBus SVN, to the deployment folder

$GEMBus/deploy/. Now we are ready to use the deployment capabilities of the Eclipse Plug-in for GEMBus.

The next component to install is the Plug-in (in the Eclipse installation). It is also possible to use it within the

Intalio Designer
2
. The process is the same on both IDEs, just copy the Plug-in file and the required

2
 Intalio|Designer is property of Intalio, Inc.

Installation of Additional Composition ComponentsCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

49

dependencies (/plugins/ folder in the svn) on the /plugins/ folder of the IDE. Restart the IDE if it is already

open. Now the Plug-in may be opened by double clicking on any .jar or .zip file. (An alternative method to start

the Plug-in will be implemented in the future.)

The Plug-in will start with an overview window showing some configuration parameters. First, enter the URL

where the GEMBus server is running, leave the port parameters as they are unless you have modified them,

and check that the deployment-api is correctly accessed by clicking on Test Connection (notice that a warning

message with missing management-api will be shown).

Figure B.1: Eclipse plug-in for GEMBus: Overview window

Now select the Deployment tab, where a list of local bundles (All the .jar and .zip files contained in the Project)

will be shown. Copy the management-api-1.0.0.jar file (Obtained from the svn) to the Project and click the

Refresh Button on the Local Bundles section, the bundle will be shown, and may now be deployed by selecting

and clicking the Deploy Button.

The remote bundles list will be updated showing the new deployed bundle.

Installation of Additional Composition ComponentsCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

50

Figure B.2: Eclipse plug-in for GEMBus: Deployment window

Using this window, it is possible to deploy, un-deploy or download the bundles stored in the GEMBus server.

B.2 Process Modelling

B.2.1 Intalio Designer Installation

The latest version of the design IDE can be obtained for use with different architectures from the download

section of the Intalio website [Intalio]. Install the software following the setup process and finally, install the

Eclipse Plug-in for GEMBus if desired (recommended). When launching the IDE, the user will be prompted for

his/her Intalio credentials, however, these are not mandatory, and may be skipped during the install.

B.2.2 Process Implementation

Once the IDE is installed, create a new Intalio Designer Business Process Project and name it sample-

orchestration-bpmn. Next, create a new Business Process Diagram and name it SampleProcess.

Installation of Additional Composition ComponentsCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

51

Figure B.3: Intalio Designer: New project wizard

Next, locate the Web Service Definition Language (WSDL) files of the web services that are going to be called

in the composition. These can be found on the GEMBus svn. Also include the XML Schema Definition (XSD)

for message typing.

Once all the necessary files have been collected, the modelling of the process can begin. All the modules

needed are available in the palette, or in the context menu, which can be activated by hovering the mouse

over the Process Editor window.

After this, create two new pools and label them Process and Services. Also rename the existing one Client.

Set the Client and Services pools to non-executable by right clicking on them. Rename the existing task

GreetingService.

Following this, add the remaining tasks, connections, and input/output events to the process editor as shown in

Figure 3.4. For more info on how to create the diagram please refer to the tutorials section of the Intalio website.

Installation of Additional Composition ComponentsCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

52

Figure B.4: Intalio Designer: Process Editor

Expand the WSDL files in the Process Explorer to see the methods implemented by the service. Drag and drop

the sayHi operation to the HelloService task, and select Provide operation. Do the same with the

getUTCTime operation to the TimeService task.

Finally, the input/output messages need to be mapped to pass parameters and results. The parameters are the

input required by each service for its correct operation. That input may come as an output from other services,

the resulting process input, or manipulation combination of the aforementioned, so those parameters should be

passed by connecting the corresponding inputs/outputs represented as variables.

First, select the HelloServiceInvocation task. Using the Mapper view, a list of variables will appear on the left

and right-hand sides. Here, we need to link the parameter coming from the GreetingRequest to the

HelloService. Click on the right-hand border of the $thisGreetingRequestRequestMsg.body variable, and a

link cursor will appear, click on the left border of the helloWorldSayHiMsg.paramer$ variable on the right-

hand side. Next, connect the output from the HelloService with the output of the TimeService, add some text

to make it user-friendly, and connect to the GreetingResponse. Then select the GreetingResponse event, to

display a new set of variables in the Mapper.

First, create three new operators by clicking the red box on top of the Mapper view, and fill them in, as shown in

Figure B.5. Finish connecting every variable and operator as depicted in Figure B.5.

Installation of Additional Composition ComponentsCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

53

Figure B.5: Intalio Designer: Mapper View

B.3 Code and OSGi Bundle Generation and Deployment

If left in default mode, Intalio Designer automatically builds upon any project changes, but some files need to be

created through the Deploy/Archive bundle, which launches the builders needed to generate all the necessary

content. At this step, the server URL is not relevant for the Deploy method, and may be set to any invalid URL,

or use the Archive method to ignore that parameter. Set the target namespace

(urn:/net.geant.gembus.service.composition.orchestration.examples) and click Deploy / Archive, depending on

the method selected.

Installation of Additional Composition ComponentsCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

54

Figure B.6: Intalio Designer. Project Manifest Editor

After a few seconds, the build folder will be filled with all the necessary files to create a deployable bundle. We

need to import the OSGi Maven project for ODE. Import the project sample-orchestration from the Subversion

(SVN) and copy the content of the build folder to the OSGi project, under the src/main/resources/META-INF

folder.

Installation of Additional Composition ComponentsCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

55

Figure B.7: Intalio Designer: Process Explorer

Note that some files are not needed at this stage, such as the tempo.zip (sample-orchestration-bpmn-

tempo.zip), or the source deploy file (Sample-Process-Process.deploy). Configure the endpoints to be

exported/imported to the Java Business Integration (JBI) bus, so the composition engine can use/expose them.

In that sense, the src/main/resources/META-INF/sptring/beans.xml file needs to be configured to create

providers for the invoked web services, as well as a consumer to expose the resulting composition to the outer

world via an Apache CXF binding component.

Installation of Additional Composition ComponentsCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

56

<cxfbc:consumer

 xmlns:sampleorchestration="urn:/net.geant.gembus.service.composition.orchest

ration.examples/SampleProcess/Process"

 wsdl="classpath:SampleProcess-Process.wsdl"

 locationURI="http://155.54.204.1:8197/SampleOrchestration/"

 targetService="sampleorchestration:CanonicServiceForClient"

 targetEndpoint="canonicPort" />

<cxfbc:provider xmlns:hws="http://cxf.examples.servicemix.apache.org/"

 wsdl="classpath:HelloWorld.wsdl"

 locationURI="http://localhost:8181/cxf/HelloWorld"

 service="hws:HelloWorldImplService"

 endpoint="HelloWorldImplPort"

 interfaceName="hws:HelloWorldImplServiceSoapBinding"

 useJBIWrapper="false"

 useSOAPEnvelope="false"

 schemaValidationEnabled="false" />

<cxfbc:provider xmlns:ts="http://ws.intalio.com/TimeService/"

 wsdl="classpath:TimeService.wsdl"

 locationURI="http://ws.intalio.com/TimeService/"

 service="ts:TimeService"

 endpoint="TimeServiceSoap"

 interfaceName="ts:TimeServiceSoap"

 useJBIWrapper="false"

 useSOAPEnvelope="false"

 schemaValidationEnabled="false" />

This step is a JBI requirement, and the file provided in src/main/resources/META-INF/sptring/beans.xml
from the svn project can be used.

Now we are ready to create the bundle for deployment. This is done using Maven, so any method used to

generate the bundle will be valid. For best results, install Eclipse IAM [Eclipse IAM] following the instructions for

Eclipse 3.4 (Intalio Designer is built upon it). This will create a file under the target folder, which is the

deployable bundle. The Eclipse Plug-in can be used to deploy it on the server.

B.4 Processes and Instances Management

If everything goes as expected, the resulting composition should be up and running. To check this, use the

management tab of the Eclipse Plug-in for GEMBus. Figure B.8 shows the deployed process, with a resume

of the Instances and some available operations.

Installation of Additional Composition ComponentsCurrent General Status and Future Work

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

57

Figure B.8: Eclipse Plug-in for GEMBus. Management window

Below the Process resume table, the selected process details are displayed and some operations are also

available, such as download the process resources, view the diagram (If it is available), etc.

References

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

58

References

[ApacheCamel] http://camel.apache.org/

[ApacheInt] Fuse ESB. Developing Apache CXF Interceptors. Version 4.3 August 2010.

[ApacheActiveMQ] http://activemq.apache.org/

[ApacheAxis] http://ws.apache.org/axis/

[Bhushan01] Federated Accounting: Service Charging and Billing in a Business-to-Business Environment.

Bhushan, B., Bhushan, B. Tschichholz, M. Leray, E. Donnelly, W., IEEE/IFIP International

Symposium on Integrated Network Management, 2001.

[Chen06] Chen, X., Khan, A. and Kant, D. Aggregate Accounting Record Recommendation. Open Grid

Forum (OGF) 2006.

[CLARIN] http://www.clarin.eu/external/

[CXFINTER] Developing Apache CXF Interceptors, 2010.

[DJ3.3.2] Composable Network Services Framework and General Architecture

http://www.geant.net/Media_Centre/Media_Library/Pages/Deliverables.aspx

[eduroam] http://www.eduroam.org/

[Eclipse IAM] http://code.google.com/p/q4e/wiki/Installation

[FUSE] http://fuse.sourceforge.net/

[GEMBus] Demo available at http://gembus.inf.um.es:8181/OrchestrationDemonstrator/

[Götze] Extensible and Scalable Usage Accounting in Service-oriented Infrastructures based on a

Generic Usage

 Record Format. Joachim Götze, Tino Fleuren, Bernd Reuther, Paul Müller, WEWST ’11,

September 14, 2011, Lugano, Switzerland

[GRNET] http://www.grnet.gr/default.asp?pid=1&la=2

[IETF] Internet Engineering Task Force, http://www.ietf.org

[Intalio] http://www.intalio.com/downloads

http://community.intalio.com/tutorials-5.2/implementing-your-first-process-in-5.2-beginner.html

[JSON] http://www.json.org/

[Kuhne11] Charging and Billing in Modern Communications Networks – A Comprehensive Survey of the

State of the Art and Future Requirements. Kühne, R., Huitema, G. and Carle, G. 2011, IEEE

Communications Surveys & Tutorials

[Mach06] Mach, R., Lepro-Metz, R. and Jackson, S. Usage Record Format Recommendation. Open Grid

Forum (OGF). 2006.

[MongoDB] MongoDB. http://www.mongodb.org/

[Mallmann08] SmartLM Grid-friendly Software Licensing for Location Independent Application Execution.

Mallmann, D., Martrat, J. and Ziegler, W. s.l. : inSiDE, Spring, 2008. 6(1).

[OASIS] http://www.oasis-open.org/

References

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

59

[OAuth2] OAuth2, http://oauth.net/2

[OIC] The OpenID Connect specification, http://openid.net/connect

[OpenID] OpenID foundation, http://openid.net

[OSGi Bundle Repository] http://www.osgi.org/download/rfc-0112_BundleRepository.pdf

[OSGi BIndex] http://www.osgi.org/Repository/BIndex

[RDF] http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

[RDF/XML] http://www.w3.org/TR/REC-rdf-syntax/

[REST] Representational state transfer http://en.wikipedia.org/wiki/Representational_state_transfer

[Rigney00] Rigney, C. RADIUS Accounting . Request for Comments of Internet Engineering Task Force

(IETF), RFC 2866. 2000.

[SAML] The Security Assertion Markup Language, http://saml.xml.org

[SAML2] http://saml2int.org/

[Scibilia07] Accounting of Storage Resources in gLite Based Infrastructures. Scibilia, F. s.l. : 16th IEEE

International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises,

2007.

[WSADDRESS] WS-Addressing. http://www.w3.org/Submission/ws-addressing/

[WSGIService] http://packages.python.org/WsgiService/

[WSS] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

[WST] http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

http://openid.net/connect
http://en.wikipedia.org/wiki/Representational_state_transfer

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

60

Glossary

API Application Programming Interface

AS Authorisation Service

BPMN Business Process Modelling Notation

CA Certification Authority

CLARIN Common Language Resources and Technology Infrastructure project

CLMP Command Line Measurement Point

CSA Composable Service Architecture

eduroam Roaming confederation aiming to provide mutual roaming network access to its members

EPR Endpoint reference (for SOAP messages)

ESB Enterprise Service Bus

F-Ticks Federated Ticker System, statistic tool from GN3-JRA3-T1 and GN3 SA3 T2

FUSE Filesystem in USErspace

GEMBus GÉANT Multi-domain Bus

GNU GNU's Not Unix (A free, Unix-like operating system)

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

ID Identity

IdP Identity Provider

IP Internet Protocol

ITU-T International Telecommunication Union, Telecommunication Standardisation Sector

JBI Java Business Integration

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

NaaS Network as a Service

NoSQL Database not based on SQL, typically not relational database

NREN National Research and Education Network

OASIS Organisation for Advancement of Structured Information Standards

OBR OSGi Bundle Repository

ODE (Apache) Orchestration Director Engine

OGF Open Grid Forum

OSGi Open Services Gateway Initiative (now OSGi Alliance)

PaaS Platform as a Service

PDP Policy Decision Point

perfSONAR PERFormance Service Oriented Network monitoring Architecture

POJO Plain Old Java Object

QoS Quality of Service

Deliverable DJ3.3.3
Composable Network Services
Document Code: GN3-12-003

61

RADIUS Remote Authentication Dial-In User Service (IETF standard)

RDF Resource Description Framework

RDF/XML The XML syntax for RDF

REST Representational State Transfer

RST Request Security Token

SAML Security Assertion Markup Language (OASIS standard)

SeT Session Token

SOA Service-Oriented Architectures

SOAP Simple Object Access Protocol

SP Service Provider

SPARQL Query language from the W3C for searching data defined in the RDF format

ST Security Token

STS Security Token Service

SVN Subversion

TTL Time to Live

TTS Ticket Translation Service

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

W3C World Wide Web Consortium

WS Web Services

WSA Web Services Architecture

WSDL Web Services Description Language

WSS Web Services Security

WST WS-Trust

XACML eXtensible Access Control Markup Language

XML eXtensible Mark-Up Language

XSD XML Schema Definition

