

29-05-2012

Deliverable DJ1.4.2:
Virtualisation Services and Framework
– Study

Deliverable DJ1.4.2

Contractual Date: 31-03-2012

Actual Date: 29-05-2012

Grant Agreement No.: 238875

Activity: JRA1

Task Item: Task 4

Nature of Deliverable: R (Report)

Dissemination Level: PU (Public)

Lead Partner: JANET/University of Essex

Document Code: GN3-12-123

Authors: B. Belter (PSNC), M. Campanella (GARR), F. Farina (GARR), J. Garcia-Espin (I2CAT), J. Jofre (I2CAT), P.

Kaufman (DFN), Radek Krzywania (PSNC) ,L. Lechert (PSNC), F. Loui (RENATER), R. Nejabati (University of

Essex), V. Reijs (HEANET), C. Tziouvaras (GRNET), T. Vlachogiannis (University of Essex), D. Wilson

(HEANET)

© DANTE on behalf of the GÉANT project.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007–

2013) under Grant Agreement No. 238875 (GÉANT).

Abstract

This deliverable updates the results of a comprehensive comparative study of existing infrastructure virtualisation technologies and

frameworks carried out in previous deliverable (DJ1.4.1). It also presents the results of a drawback analysis of virtualisation deployment for

NRENs and GÉANT. In addition, the deliverable defines a multi-layer, multi-domain virtualisation service for GÉANT, GENUS, proposing an

architecture as well as an approach for its implementation within GÉANT and associated NREN infrastructures. Finally, it provides details of

GENUS prototype design and its proof-of-concept implementation on the GENUS testbed.

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

Table of Contents

Executive Summary 1

1 Introduction 3

2 Overview of Existing Virtualisation Technologies and their Usage 5

2.1 Introduction 5

2.2 FEDERICA 6

2.3 MANTICORE/MANTYCHORE 6

2.4 Phosphorus (UCLP) 14

2.5 4WARD 14

2.6 GENI 14

2.7 PlanetLab/VINI/OneLab 25

2.8 AKARI 25

2.9 GEYSERS 30

2.10 NOVI 39

2.11 OFELIA 48

2.12 Google App Engine 54

2.13 Amazon Virtualisation 57

2.14 Summary Comparison 58

3 Drawback Analysis of Virtualisation of Network Services 65

3.1 Introduction 65

3.2 Drawback analysis methodology 65

3.3 Drawback Areas 66

3.4 Summary Table 73

3.5 Discussion and Conclusions 74

4 GÉANT Virtualisation Service (GENUS) 76

4.1 Introduction 76

4.2 GENUS Services 78

4.3 Generic GENUS scenario/use case description 80

4.4 State-of-the-art virtual infrastructure federation 81

Contents

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

iii

4.5 GENUS architectural building blocks 85

4.6 References 88

5 Virtualised Operations Support Service (VOSS) 89

5.1 Introduction 89

5.2 RORA model 91

5.3 Ownership 95

5.4 Roles 95

5.5 Actors 97

5.6 VOSS Pros and Cons 97

6 GENUS Prototype Design and Proof-of-Concept Implementation 99

6.1 Introduction 99

6.2 Information modelling framework 99

6.3 Implementation of virtual Infrastructure composition and operation 103

6.4 Implementation of NREN and GÉANT adaptors 111

6.5 Implementation of unified user interface 111

6.6 First GENUS prototype release 114

7 GENUS Testbed 116

7.1 Testbed backbone 117

7.2 Local facilities attached to the testbed backbone 117

7.3 First GENUS prototype demonstration 118

8 Conclusions 119

References 120

Glossary 123

Contents

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

iv

Table of Figures

Figure 2.1: MANTYCHORE architecture 9

Figure 2.2: MANTYCHORE marketplace 10

Figure 2.3: MANTYCHORE IP Network editor 13

Figure 2.4: GENI architecture 16

Figure 2.5: GENI block diagram or GENI-System [GENI-Intro] 19

Figure 2.6: CPS design 20

Figure 2.7: GEYSERS architecture 32

Figure 2.8: NOVI Innovation Cloud 41

Figure 2.9: NOVI’s Control and Management Plane functionality: a preliminary conceptual view 42

Figure 2.10: NOVI’s Control and Management functionality in a federation scenario: a preliminary

conceptual view 44

Figure 2.11: FIRE federated environment tailored to be used for NOVI experiments 45

Figure 2.12: vSwitch high-level view 46

Figure 2.13: Topology overview 47

Figure 2.14: OpenFlow architecture 49

Figure 2.15: OpenFlow virtualisation of physical infrastructure 50

Figure 2.16: Expedient dashboard 53

Figure 4.1: GENUS basic functionalities with its main actors 79

Figure 4.2: GENUS’s role in providing federated multi-domain, multi-technology virtualisation 80

Figure 4.3: Teagle overview 83

Figure 4.4: PlanetLab SFA architecture 84

Figure 4.5: GENUS architecture 85

Figure 4.6: Distributed GENUS layout using ESBs 87

Figure 5.1: eTOM Level 2 functionalities considered by VOSS 91

Figure 5.2: Resource aggregation and partitioning 92

Figure 5.3: Relationship between WoR and MaR 94

Figure 5.4: GENUS resource ownership model 95

Figure 5.5: GENUS roles and actors 97

Figure 6.1: Main hierarchy of the IMF model 100

Figure 6.2: Different types of network connections 101

Figure 6.3: IMF Device properties 102

Figure 6.4: IMF Virtual Infrastructure properties 103

Figure 6.5: Registration of a new facility and resource discovery in the GENUS system 104

Figure 6.6: Requesting a new service (a new virtual infrastructure) from the GENUS system 104

Contents

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

v

Figure 6.7: Decommissioning a service (a virtual infrastructure) in the GENUS system 105

Figure 6.8: GENUS unified user interface: main menu 112

Figure 6.9: GENUS unified user interface: list of registered external systems 113

Figure 6.10: GENUS unified user interface: service for browsing available resources of an

infrastructure or facility 113

Table of Tables

Table 2.1: Status and location of virtualisation projects’ information 6

Table 2.2: Summary comparison of virtualisation technologies 64

Table 3.1: Drawback analysis summary 74

Table 4.1: Steps to instantiate a virtual infrastructure 81

Table 6.1: Information exchange during facility registration 106

Table 6.2: Information exchange during resource discovery 107

Table 6.3: Information exchange during service request (virtual infrastructure) 108

Table 6.4: Information exchange during service termination (virtual infrastructure) 109

Table 6.5: Information exchange during service participation – resource optimisation 110

Table 6.6: Information exchange during service participation – resource release 110

Table 6.7: GENUS user-interface functionality 112

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

1

Executive Summary

This document aims to investigate potential uses and benefits of infrastructure virtualisation services to provide

guidance for the GÉANT and NREN communities. It proposes a multi-layer, multi-domain and multi-technology

virtualisation architecture suitable for NREN requirements based on tools and software that have already been

developed or are currently under development within the European research community.

The deliverable first updates the comprehensive comparative study of recent and existing major activities,

research projects and technologies addressing infrastructure virtualisation that was begun in “Deliverable

DJ1.4.1: Virtualisation Services and Framework Study” [GN3-DJ1.4.1]. The projects considered include

European projects (FEDERICA, MANTYCHORE, Phosphorus, 4WARD, GEYSERS, NOVI, OFELIA), US

projects (GENI, PlanetLab/VINI/OneLab), a Japanese project (AKARI) and two commercial cloud projects

(Amazon virtualisation and Google App engine). All the projects include infrastructure virtualisation at national

and/or international level and some of them involve National Research and Education Networks (NRENs) and

international connectivity. The study tries to provide a consistently structured assessment of the different

projects, addressing the following points:

 Overview of the project and its objective.

 A definition of infrastructure virtualisation as understood by the project as well as an architectural

overview of its virtualisation approach.

 User community.

 Overview of existing features and implementation of virtualisation for Layer 1, Layer 2, Layer 3 and

computing resources.

 Multi-domain support offered by the virtualisation technology.

 Testbed implementation and availability.

 Current status and roadmap.

The results of the study conclude that the European research community, helped by the drive and commitment

of the NRENs, has achieved significant progress on infrastructure virtualisation technologies through projects

such as GEYSERS, MANTYCHORE, NOVI and OFELIA. These projects are complementary and, combined

together, can provide virtualisation of Layer 1, Layer 2 and Layer 3 networks as well as computing resources.

The involvement of GN3 JRA1 Task 4 participants in these projects means the Task is well placed to build on

their developments and achievements, leveraging the first-hand knowledge and experience gained in defining

its proposal for GÉANT virtualisation services, at the same time providing the capability to incorporate the

outcome of any future relevant projects and frameworks.

Executive Summary

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

2

This deliverable also presents the results of a drawback analysis of virtualisation deployment for NRENs and

GÉANT, considering technical, service and business issues, and assessing the probability and severity of each

potential drawback. The analysis concludes that there are no major issues with regard to the technical features

required for the hardware and software to provide the necessary capabilities for virtualisation. However, apart

from these purely technical aspects, somewhat larger problems still exist, especially with regard to the

operational environment, the maturity of solutions and the area of security.

Many of the virtualisation technologies resulting from the projects mentioned above are still in their research

and development stage. It is therefore not realistic to propose a specific solution to the NREN and GÉANT

community. This report does not aim to promote a specific solution or framework for the GÉANT virtualisation

service. Instead, it proposes a solution for integrating and interworking existing virtualisation mechanisms and

solutions at different layers, leaving the choice of suitable virtualisation technologies to individual NRENs, while

enabling them to offer multi-domain, multi-layer and multi-technology virtualisation service.

The deliverable defines a multi-layer, multi-domain infrastructure virtualisation service for GÉANT which is

called GENUS (GÉaNt virtUalisation Service). It proposes an architecture as well as an approach for GENUS

implementation based on a combination of solutions and tools provided by relevant EU projects such as

OFELIA and MANTYCHORE as well as the GÉANT Bandwidth on Demand service. Without reinventing the

wheel, the proposition is to integrate and orchestrate existing Layer 1, Layer 2, Layer 3 and computing

virtualisation tools using the GENUS platform.

The deliverable also outlines the software design and implementation of the GENUS prototype. The prototype

includes capability for multi-domain Layer 1, Layer 2, Layer 3 and computing virtualisation as well as support

for the AutoBAHN bandwidth-on-demand provisioning tool. It also includes a web-based user interface as well

as a set of complex methods for virtual infrastructure composition.

In addition, the deliverable discusses all the relevant issues for operational support and service of a virtualised

infrastructure. It introduces the required functionality as well as the business and management aspects of a

virtual infrastructure from both operator and user point of view by introducing the concept of a Virtualised

Operations Support Service (VOSS).

Finally, the deliverable describes the GENUS multi-domain heterogeneous testbed and verification platform.

The prototype demonstration and proof-of-concept implementation will be carried out using existing resources

within Task 4 participants’ facilities. The GENUS testbed comprises two virtualisation frameworks, i.e.

MANTYCHORE (IP virtualisation) and OFELIA (computing, Layer 2 and Layer 1 virtualisation based on

OpenFlow), with support for GÉANT’s AutoBAHN tool all installed over four local testbeds interconnected by

GÉANT and FEDERICA. A final set of results will be documented in a white paper, due to be available in March

2013.

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

3

1 Introduction

Current developments and technical enhancements of transport networks’ technologies, network management

and control planes, multi-core processing, cloud computing, data repositories and energy efficiency, are driving

profound transformations of NRENs’ (National Research and Education Networks) network infrastructures and

their users’ capabilities. These technological advances are driving the emergence of ever more demanding

high-performance and network-based applications with strict IT (e.g. computing and data repositories) and

network resource requirements. Examples of these applications include: ultra-high definition remote

visualisation and networked high-performance supercomputing infrastructure. These types of applications often

require their own dedicated network and IT resources tailored to their strict computing and network resource

requirements. As these types of collaborative and network-based applications evolve, addressing the needs of

a wide range of users in the NREN community, it is not feasible (for scalability reasons, among others) to set up

and configure dedicated network and computing resources for each application type or category. Consequently,

NRENs need to deploy an infrastructure management mechanism able to support all application types optimally,

each with their own access, network and IT resource usage patterns. Any solution providing such an

infrastructure management mechanism has to address the following challenges:

 Increase in the number of users/applications and rapid increase in available bandwidth for users

beyond 1 Gbit/s.

 Emergence of new scientific applications requiring 10G or even 100G connectivity e.g. the Large

Hadron Collider (LHC) and radio astronomy.

 Partitioning of physical network and IT infrastructures for providing secure and isolated application

specific infrastructure.

 Migration towards a full range and large-scale convergence of IT and network services.

 Energy-efficiency in networking and computing.

A key issue in addressing these challenges is efficient network and computing resource utilisation and sharing

within the current and future NREN infrastructure.

This deliverable aims to investigate potential uses of virtualisation to address the challenges listed above and

provide guidance to the GÉANT community. In the context of network and computing infrastructure,

virtualisation is the creation of a virtual version of a physical resource (e.g. network, router, switch, optical

device or computing server), based on an abstract model of that resource and often achieved by partitioning

(slicing) and/or aggregation. A virtual infrastructure is a set of virtual resources interconnected together and

managed by a single administrative entity. The deliverable proposes a multi-layer virtualisation architecture

Introduction

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

4

suitable for NREN requirements based on tools and software that have already been developed or are currently

under development within the European research community.

GN3 Joint Research Activity 1 Future Network, Task 4 Current and Potential Uses of Virtualisation (JRA1 T4)

and, consequently, this deliverable investigate the application of virtualisation technology for the GÉANT

community within the framework of Infrastructure as a Service (IaaS) [IaaS]. IaaS is a promising paradigm that

enables NRENs to provide infrastructure resources such as routers, switches, optical devices, Internet Protocol

(IP) networks, and computing servers as a service to their user communities. It comprises a set of software and

tools that allows virtualisation of infrastructure by means of partitioning (slicing) and/or aggregation of

infrastructure resources (i.e. network elements and computing resource). Resource virtualisation is an effective

method for sharing infrastructure resource among users and applications efficiently and therefore its immediate

benefit for NRENs is to increase resource utilisation efficiency. Virtualisation can also potentially enable NRENs

to offer remote access and control of virtual infrastructure elements (slices of real physical elements) to their

user organisations through web services. By using virtualisation services, users can control their own virtual

infrastructure. This provides an effective mechanism for secure and isolated application-specific virtual

infrastructures to share physical infrastructure. Furthermore, virtualisation can potentially provide a new level of

flexibility to the NRENs, as their infrastructure can scale up or down following user/application requirements,

thereby minimising the cost of operating the infrastructure (both the capital and the operational expenditures).

This deliverable is the second and final report on a comparative study of existing virtualisation technologies and

frameworks; the initial report, “Deliverable DJ1.4.1: Virtualisation Services and Framework Study” [GN3-

DJ1.4.1], was published in May 2010. It updates the previous findings, adds further examples of virtualisation

technologies and frameworks, and has a new section covering a drawback analysis of infrastructure

virtualisation for NRENs and GÉANT. It also includes a proposal and proof-of-concept implementation for a

virtualisation service in GÉANT. To this end the deliverable has been organised as follows:

 Chapter 2 updates the results of a detailed comparative study of the main recent and current projects

and initiatives addressing virtualisation technology.

 Chapter 3 reports on a drawback analysis of infrastructure virtualisation.

 Chapter 4 outlines a proposed GÉANT virtualisation service, GENUS, which is a multi-layer and multi-

domain infrastructure virtualisation mechanism based on a combination of solutions and tools provided

by relevant EU projects.

 Chapter 5 discusses issues relevant to the operation, management and support of a virtualised

infrastructure, particularly as addressed by GENUS’ Virtualised Operations Support Service (VOSS).

 Chapter 6 describes the software design of GENUS and the proof-of-concept implementation.

 Chapter 7 describes the GENUS multi-layer and multi-domain virtualisation testbed and virtualisation

verification platform for future improvement and investigation of issues relevant to GENUS and the

GÉANT virtualisation service.

 Finally, Chapter 8 provides an overall assessment of JRA1 Task 4’s work on virtualisation technologies

to date.

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

5

2 Overview of Existing Virtualisation
Technologies and their Usage

2.1 Introduction

This chapter updates the comprehensive overview of recent and existing major activities, research projects and

technologies addressing infrastructure virtualisation that was first documented in DJ1.4.1. Where the

information is unchanged from the initial report, it is not duplicated here; instead, a reference to the appropriate

section in DJ1.4.1 is provided. For convenience, however, the summary comparison table (Section 2.14) covers

all projects and initiatives. Table 2.1 below shows the projects considered, giving their type (European, US,

Japanese or commercial cloud), and the status and location of the information. All the projects include

infrastructure virtualisation at national and/or international level and some of them involve National Research

and Education Networks (NRENs) and international connectivity. (Although there are other European

virtualisation projects, e.g. the computing virtualisation projects OpenNEBULA and STRATUS lab, and other

commercial network virtualisation products, e.g. Tail-f’s Network Configuration Server (NCS), these have not

been considered because they do not address infrastructure virtualisation as defined within this document,

where an infrastructure (network + computing) is sliced by means of virtualisation and control of the slice is

given to its users or virtual infrastructure owner.)

Project Type Status Document / Section

FEDERICA European Information unchanged DJ1.4.1 Section 2.2

MANTICORE/MANTYCHORE European Updated and/or new This document Section 2.3

Phosphorus European Information unchanged DJ1.4.1 Section 2.4

4WARD European Information unchanged DJ1.4.1 Section 2.5

GENI US Updated and/or new This document Section 2.6

PlanetLab/VINI/OneLab US Information unchanged DJ1.4.1 Section 2.7

AKARI Japanese Updated and/or new This document Section 2.8

GEYSERS European New This document Section 2.9

NOVI European New This document Section 2.10

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

6

Project Type Status Document / Section

OFELIA European New This document Section 2.11

Google App Engine Commercial cloud Updated and/or new This document Section 2.12

Amazon Virtualisation Commercial cloud Information unchanged DJ1.4.1 Section 2.9.1

Table 2.1: Status and location of virtualisation projects’ information

The review of each project has been organised to cover:

1. Introduction – an overview of the project and its objective.

2. Architecture overview – a definition of infrastructure virtualisation as understood by the project as well

as an architectural overview of its virtualisation approach.

3. User community – a description of the user group(s) at which the project is aimed.

4. Mechanisms for providing virtualisation – an overview of existing features and implementation of

virtualisation for Layer 1, Layer 2, Layer 3 and computing resources.

5. Multi-domain support – a statement of whether the virtualisation technology can be applied in a multi-

domain environment.

6. Testbed implementation and availability – a description of the virtualisation testbed and test scenario, if

they exist.

7. Current status and roadmap – roadmap and future plans with respect to virtualisation.

8. References – details of sources cited in the overview (these are also given in the References section at

the end of the document on page 68.)

Finally, this section concludes with a comparison table summarising the virtualisation capability and features of

all the projects reviewed.

2.2 FEDERICA

The information about FEDERICA is unchanged. Please refer to [GN3-DJ1.4.1] Section 2.2.

2.3 MANTICORE/MANTYCHORE

Much of the information in this section is taken from the MANTYCHORE “Description of Work”

[MANTYCHORE-DoW].

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

7

2.3.1 Introduction

In 2006, MANTICORE I's main objective was to implement a proof of concept for the IP Network as a Service

(IPNaaS) paradigm, which was successfully demonstrated. A privately funded consortium, MANTICORE II was

initiated in 2008 to implement the abovementioned paradigm as a robust tool. At the end of MANTICORE II,

three NRENs performed a pilot trial.

In 2010, the MANTYCHORE project started, funded by the FP7 programme. The goal is to provide IPNaaS to

three end-user communities: eHealth, Media and Grid/Cloud computing. MANTYCHORE is also intended to

exploit the Infrastructure as a Service paradigm to enable NRENs and other e-infrastructure providers to

enhance their service portfolio by building and deploying the software and tools to provide IP Networks as a

Service to virtual research communities. Another important objective is to improve and expand the services

provided by integrating the results of MANTICORE II with solutions based on the optical IaaS Framework [Argia]

and Ethernet / Multi-Protocol Label Switching (MPLS), so that offer the possibility of providing integrated

services to level 1-3 for the research community.

IP Network as a Service (IP Network Service) is a key enabler of the flexible and stable e- Infrastructures of the

future. Today, a myriad of tool prototypes for providing point-to-point links to researchers have been developed.

These tools, while providing high-bandwidth pipes to researchers, only address one side of the problem.

Researchers who want to create a virtual community to address scientific problems are still connected to each

institution’s networks, and it is a hard problem to connect them directly with high-bandwidth pipes because it

causes a number of issues such as security or routing integrity. One of the ways of efficiently solving this

problem is to create a logically separated IP network (on top of the high-bandwidth pipes), or to use separate

instances of virtualised routers, or a combination of both, and to dedicate it to the virtual research community.

In order to maximise the flexibility and convenience of this IP Network Service, the users of the virtual

community should be able to modify the characteristics of their IP network (such as the addressing, dynamic

routing protocols, routing policies, quality of service and so on) by themselves.

The IP Network Service follows the IaaS paradigm, consisting of offering remote access and control of

infrastructure elements to third-party organisations through software web services. By using IaaS services

these organisations can control the remote infrastructure as if they owned it and be billed either per use or

based on a monthly fee, promoting the re-use of existing infrastructure and avoiding the purchase of new

devices on the provider and customer sites.

In order to improve the IaaS service, some alternative but very interesting topics will be researched. An

infrastructure resource marketplace and the use of renewable energy sources to power e-infrastructures will be

developed and included in MANTYCHORE software, enriching both the user community and the roadmap of

the MANTYCHORE project

2.3.2 Architecture overview

As mentioned in Section 2.3.1, MANTYCHORE follows the IaaS paradigm, enabling NRENs and other e-

Infrastructure providers to enhance their service portfolio by building and deploying software and tools to

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

8

provide infrastructure resources (such as routers, switches, optical devices, and IP networks) as a service to

virtual research communities. Three user roles can be identified in the IaaS scenario:

 Infrastructure Provider: The infrastructure owner. This user can assign permissions to the

infrastructure resources he owns so that external users can control it. Infrastructure instances can be

either physical (e.g. a physical router) or virtual (e.g. a logical router). In the MANTYCHORE case,

NRENs are the Infrastructure Providers, offering their infrastructure to user communities.

 Service Provider or Virtual Operator: This user can harvest infrastructure instances from one or more

Infrastructure Providers and integrate them into his management domain (e.g. he can integrate several

routers into an IP network). He can also act as an Infrastructure Provider and reassign the permissions

on “his” infrastructure instances so that other Service Providers can control them (it is a recursive

process). He normally uses the infrastructure instances of his domain to provide some kind of service to

end users (e.g. an IP Network service). In the MANTYCHORE scenario, an international community of

researchers could create a virtual organisation with their own dedicated IP network (built using

resources from different NRENs). One partner of this international research community would adopt the

role of the “Service Provider” – typically the leader of the testbed Work Package in a European project,

for example.

 End User: Uses the services offered by the Virtual Operator. These users belong to a virtual

community that receives several infrastructure resources and creates one or more IP networks out of

them. Users are empowered to change some attributes of the IP network service (such as internal

routing, IP addressing, peering, creating circuits between end points, firewalls), but would not be able to

modify the number of resources in the network. In any case, it would be their Virtual Operator who

controls the permissions of each individual user (hence the definition of different user profiles is

possible).

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

9

Figure 2.1: MANTYCHORE architecture

Additionally, a marketplace provides a single venue that facilitates the sharing of information about resources

and services between providers and customers. It provides an interface through which consumers are able to

access the discovered resources from their respective providers. The MANTYCHORE marketplace represents

a virtual resource pool that provides a unified platform in which multiple infrastructure providers can advertise

their network resources and characteristics to be discovered by potential consumers of the resource. Thus, the

marketplace involves three types of entities:

1. The customers that use the resources. These customers may be end users, service providers or other

providers who wish to extend their point of presence.

2. The infrastructure providers that provide information about the state of their underlying infrastructure to

satisfy the demands of customers.

3. The matchmaking entity that is used to look up and locate relevant resources as requested by the

customer. The matchmaking entity mediates among the providers and the customer and uses a

matching algorithm that parses requests into queries, evaluates the queries against the resources in the

marketplace repository and returns the relevant resources. These algorithms are implemented in a

generic manner using Quality of Service (QoS) parameters suitable to Layer 3, 2 and 1.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

10

Figure 2.2: MANTYCHORE marketplace

It is important to note that an adapter needs to be developed for each equipment vendor. Currently, there is

support for routers from Juniper and Cisco as well as software routers with Linux running Quagga are in the

roadmap.

2.3.3 User community

The initial MANTYCHORE user community is formed of three research user groups, where each user group

uses the MANTYCHORE services individually for its own interests. These three user groups include the Danish

HDN (Health Data Network), the British UHDM (Ultra High Definition Media) group, and the Irish Grid network.

As MANTYCHORE deployment is in a pre-operational phase, albeit with real users, feedback will be collected

from the users to improve the MANTYCHORE services and correct any bugs that may appear. It is not a pilot

phase to correct some bugs, it is an evaluation that determines whether the MANTYCHORE services are useful

for each particular research community. When the pre-operational phase has been successfully completed, the

service can be rolled out on an operational level to a larger community.

2.3.4 Mechanisms for providing virtualisation

2.3.4.1 Implementation of virtualisation on Layer 3

The MANTYCHORE suite includes a set of features for:

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

11

 Configuration of virtual networks.

 Configuration of physical interfaces.

 Support of routing protocols, both internal (Routing Information Protocol (RIP), Open Shortest Path First

(OSPF)) and external (Border Gateway Protocol (BGP)).

 Support of QoS and firewall services.

 Creation, modification and deletion of virtual resources: logical interfaces, logical routers.

 Support of IPv6. It allows the configuration of IPv6 in interfaces, routing protocols, networks.

2.3.4.2 Implementation of virtualisation on Layer 2

Users will be able to obtain permissions over Ethernet and MPLS (Layer 2.5) switches, and to configure

different services. For this aspect, MANTYCHORE will integrate the Ether project [Ether] and its capabilities for

the management of Ethernet and MPLS resources.

2.3.4.3 Implementation of virtualisation on Layer 1

Users will be able to obtain permissions over optical devices such as optical switches, and to configure some

important properties of the device’s cards and ports. For this aspect, MANTYCHORE will integrate the Argia

framework [Argia], which provides complete control of optical resources.

2.3.4.4 Implementation of computing virtualisation

MANTYCHORE does not define or include virtualised computing infrastructure. Its scope is the connectivity

between such resources, and providing an effective method for describing and implementing the connectivity

that they require.

2.3.4.5 Management of virtualised infrastructure

In general, it is planned that MANTYCHORE will take over management of the physical routers that provide the

virtual infrastructure. The routers are configured by the MANTYCHORE server using the NETCONF protocol

over Secure Shell (SSH). There may be some flexibility with regard to manual configuration, however.

Once MANTYCHORE is able to manage a physical router, it manages the setup, configuration and deletion of

logical routers within the physical device. Normal router management systems, such as Simple Network

Management Protocol (SNMP)-based tools like Multi-Router Traffic Grapher (MRTG), can be configured to

monitor the infrastructure.

The operator retains the ability to manage the infrastructure, even when they delegate control over a logical

router to the user. This ensures that the operator continues to maintain a full picture, and control where

necessary, of the overall infrastructure, while day-to-day management is delegated (within particular

boundaries) to the user.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

12

2.3.4.6 Control of virtualised infrastructure

Control of the infrastructure in MANTYCHORE is delegated by the infrastructure operator to the user, perhaps

through a network operations centre or a customer’s IT department. The objective is to allow the user to

perform the day-to-day setup and management of their logical network, within the boundaries agreed to and set

by their provider.

As a result, where MANTYCHORE manages a set of physical routers with particular facilities, the operator of

the physical router will set up logical routers and delegate access to them, with particular interfaces and

protocols, to their customer. This access may be further delegated to an end user. The end user can then set

up the network of their choice, within the boundaries delegated to them.

2.3.4.7 Implementation of user interface

The process of setting up and delegating routers from the operator to the user is accomplished by means of the

Graphical User Interface (GUI). This will work in a web browser, accessing a backend server which itself will

configure the routers. The operator needs to set up the physical routers for management, and can then set up

logical routers and delegate access to them to a user.

Once the user has logical routers delegated to them, they also configure the routers by means of the

MANTYCHORE GUI. Links between the routers are created, IP addresses defined and routing protocols as

needed are set up. While this was a relatively manual process in MANTICORE II, the MANTYCHORE project

plans a process that is much more intuitive, automating best-practice networking in such a way that users

should be able to set up their networks, to the level of detail they are comfortable with, without requiring

specialist networking knowledge. Currently, the user interface is the same as that used in MANTICORE; a

screenshot of the IP Network editor is shown in Figure 2.3.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

13

Figure 2.3: MANTYCHORE IP Network editor

2.3.5 Multi-domain support

The networks that MANTYCHORE sets up and manages are single-domain networks. A single operator

manages the infrastructure and the resulting logical networks are managed by a single user. That said, the

underlying infrastructure can in principle be provided by multiple administrative domains, in particular in the

case of physical routers in physically diverse locations linked by trans-national links.

2.3.6 Testbed implementation and availability

MANTYCHORE does not plan to set up a publicly available testbed, although in the future a router may be

available so that interested users can try the MANTYCHORE software in a demo situation. However, the

project does plan to set up a testbed comprising a number of routers for the development, testing and

demonstration of their own use case implementations.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

14

2.3.7 Current status and roadmap

The MANTICORE II project has closed and its main outcomes have been ported to MANTYCHORE. Currently

MANTYCHORE is upgrading its core framework to IaaS Framework and delivered an initial version in June

2011. For information about the project’s future plans, please see [MANTYCHORE].

2.3.8 References

[Argia] E. Grasa, S. Figuerola, A. Forns, G. Junyent, J. Mambretti, “Extending the Argia Software with

a Dynamic Optical Multicast Service to support High Performance Digital Media", accepted for

publication in Elsevier journal of Optical Switching and Networking Volume 6, Issue 2, April

2009

[MANTYCHORE] MANTYCHORE website

http://www.mantychore.eu/

[MANTYCHORE-DoW] MANTYCHORE “Description of Work”

http://jira.i2cat.net:8090/download/attachments/3211820/MANTYCHORE+FP7+-+DoW+-

+Part+B+-+final+-+budget+removed.pdf

2.4 Phosphorus (UCLP)

The information about Phosphorus (User-Controlled Lightpath Provisioning (UCLP)) is unchanged. Please refer

to [GN3-DJ1.4.1] Section 2.4.

2.5 4WARD

The information about 4WARD is unchanged. Please refer to [GN3-DJ1.4.1] Section 2.5.

2.6 GENI

Some of this summary, including the graphics, has been extracted from “GENI: Global Environment for Network

Innovations – Facility Design” [GENI-GDD-07-44], dated March 2007, and was presented in [GN3-DJ1.4.1]

(Section 2.6). However, new and/or updated information is provided in Sections 2.6.2.4, 2.6.4.5, 2.6.4.6, 2.6.4.7,

2.6.5 and 2.6.6.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

15

2.6.1 Introduction

Global Environment for Network Innovation (GENI) [GENI] is a US programme funded by the NSF (National

Science Foundation). It is an experimental facility designed to form a robust, federated environment to allow

computer networks’ researchers to experiment on a wide variety of problems in communications, networking,

distributed systems, cyber-security, and networked services and applications with emphasis on new radical

ideas. GENI will provide an environment for evaluating new architectures and protocols, over fibre-optic

networks equipped with state-of-the-art optical switches, novel high-speed routers, radio networks,

computational clusters and sensor grids.

GENI infrastructure presents some key characteristics in order to enable advanced research:

 Programmability: researchers can fully control GENI nodes’ behaviour.

 Virtualisation: researchers can simultaneously share the GENI infrastructure using their own isolated

slice of resources.

 Federation: different parts of the GENI infrastructure are owned and/or operated by different

organisations.

 Slice-based experimentation: each experiment will be implemented on a specific slice of the GENI

resources.

This experimental facility should pave the way to:

 Long-running, realistic experiments with enough instrumentation to provide real insights and data.

 Propose an infrastructure that promotes and makes adhesion easy for real users into these long-

running experiments.

 Enable large-scale growth for successful experiments, so good ideas can be validated on a large scale.

Ultimately, GENI’s goal is to avoid technology “lock in,” enable addition of new technologies as they mature,

and potentially grow quickly by incorporating existing infrastructure into the overall “GENI ecosystem”.

A great number of projects are currently ongoing that are targeted at designing and operating prototypes of the

GENI infrastructure. These projects are managed by the GENI Project Office (GPO).

2.6.2 Architecture overview

The high level GENI architecture can be divided into three levels, as shown in Figure 2.4:

 Physical substrate: represents the set of physical resources that constitute the GENI infrastructure,

such as routers, links, switches.

 User services: represent the set of services that are available for the users in order to fulfill their

research goals.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

16

 GENI Management Core (GMC): defines a framework in order to bind user services with underlying

physical substrate. In order to implement this, it includes a set of abstractions, interfaces and name

spaces and provides an underlying messaging and remote operation invocation framework.

Figure 2.4: GENI architecture

The following sections provide more detail on the three levels of the GENI architecture.

2.6.2.1 Physical substrate

The physical substrate consists of an expandable collection of components. GENI components fall into one of

the following categories:

 Programmable Edge Clusters (PEC): provide computational and storage resources as well as initial

implementations of new network elements.

 Programmable Core Nodes (PCN): provide high-speed core-network data-processing functions.

 Programmable Edge Nodes (PEN): provide data-forwarding functionality at the boundary between

access networks and a high-speed backbone.

 Programmable Wireless Nodes (PWN): implement proxies and other forwarding functionality within a

wireless network.

 Client Devices: provide access to experimental services for end users.

 National Fibre Facility: provides 10 Gbps to 40 Gbps light path interconnection between PCNs.

 Tail circuits: interconnect GENI edge sites to the GENI core.

 Internet Exchange Points: interconnect the nationwide infrastructure to the commodity Internet.

 Urban 802.11-based Mesh Wireless Subnets: provide support for ad-hoc and mesh-network research.

 Wide-Area Suburban 3G/WiMax-based Wireless Subnets: provide open-access 3G/WiMax radios for

wide-area coverage, along with short-range 802.11 class radios for hotspot and hybrid service models.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

17

 Cognitive Radio Subnets: support experimental development and validation of emerging spectrum

allocation, access, and negotiation models.

 Application-Specific Sensor Subnets: support research on both underlying protocols and specific

applications of sensor networks.

 Emulation Grids: allow researchers to introduce and utilise controlled traffic and network conditions

within an experimental framework.

2.6.2.2 GMC

The GENI Management Core (GMC) is a framework that defines a set of abstractions, interfaces and name

spaces that binds together the GENI infrastructure. Because GENI’s physical substrate and user services will

develop and evolve rapidly as the facility is constructed and used, the GMC is designed to provide a narrowly

defined set of mechanisms that both support and foster this development while isolating developmental change

in one part of the system from that in other parts, so that independent progress may be made.

Abstractions

The GMC defines three key abstractions: components, slices, and aggregates. This sub-section introduces the

abstractions; the following section describes the interfaces they support.

 Components: A component encapsulates a collection of substrate resources that can be either

included on a single device or includes resources from many devices. Any resource can belong to only

one component. Each component is controlled via a component manager (CM), over a well-defined

interface. At the GENI facility it is possible to slice component resources among multiple users. This can

be done either by virtualising component resources or by strictly partitioning them among the users. In

both cases, the user is granted a sliver of the component. Each component is assigned a unique

identifier as well as a human-friendly name.

 Slices: A slice is a set of slivers across a set of GENI components and an associated set of

researchers that are implementing an experiment over these slivers. Each slice is assigned a unique

identifier as well as a human-friendly name. Within the GENI framework, an experiment is a researcher-

defined use of a slice.

 Aggregates: An aggregate is an unordered collection of components. Aggregates support hierarchy;

an aggregate can contain other aggregates as well as components. Each aggregate has a unique

identifier as well as a human-friendly name. Moreover, aggregates are controlled by aggregate

managers.

Interfaces

GMC defines unique identifiers, called GENI Global Identifiers (GGID) for all the objects that constitute the

GENI infrastructure, that is, components, slices and aggregates. A GGID is represented as an X.509 certificate.

Moreover, GMC defines two basic data types:

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

18

 Resource specification (RSpec): the data structure that describes GENI resources. It contains

information about the resources that are encapsulated by components, their processing capabilities,

their network interfaces and the instrumentation available on them.

 Tickets: granted by a component owner to a researcher, and later “redeemed” to acquire resources on

the component.

GMC defines a series of operations for components, slices and aggregates. Some of them are mentioned

below:

 Creating/modifying/deleting slices.

 Request for allocating a slice.

 Start/stop/delete a slice.

 Add/delete components in an aggregate.

2.6.2.3 User services

As shown in Figure 2.4, user services are built on top of the GMC and are the set of distributed services that

enable GENI users to implement experiments on a given slice as well as to manage their allocated slices.

From the user services point of view, diverse user communities are defined in GENI. These communities are:

 Owners of parts of the substrate: define usage policies of the substrate and provide mechanisms for

enforcing these policies.

 Administrators of parts of GENI: manage the GENI substrate ensuring proper operation.

 Developers of user services: create GENI services using the GMC interfaces.

 Researchers: use the GENI facility in order to conduct research. They can allocate resources on the

GENI substrate and deploy specific software.

 End users not affiliated with GENI, but who access services provided by research projects that run over

GENI.

 Third parties that may be impacted from GENI operation.

2.6.2.4 GENI system overview

A block diagram of the overall GENI system covering the most important entities is shown in Figure 2.5 below.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

19

Figure 2.5: GENI block diagram or GENI-System [GENI-Intro]

The clearinghouse is a centralised software entity that registers all the GENI elements. It is a cornerstone of the

GENI system, since each GENI user needs to communicate with it in order to request GENI resources or

modify the set of resources that are available to him/her. More specifically it includes:

 Principal registry, which holds a record for each GENI actor (e.g. researcher, administrator).

 Slice registry, which holds a record for each slice including information regarding the responsible

organisation, and slice status.

 Component registry, which holds a record for each affiliated substrate component or aggregate that is

part of the GENI system.

2.6.3 User community

As stated in Section 2.6.1 Introduction on page 15, the GENI infrastructure will provide the opportunity for

researchers to experiment on a wide variety of innovative ideas on computer networks.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

20

2.6.4 Mechanisms for providing virtualisation

2.6.4.1 Implementation of virtualisation on Layer 3

Each Programmable Core Node (PCN) includes a Packet Processing System (PPS) which is a collection of line

cards, general-purpose processors, and programmable hardware (e.g., network processors and Field

Programmable Gate Arrays (FPGAs)) connected via a switch fabric. PPS implements a high-speed

programmable device that supports multiple virtual routers, possibly belonging to different slices, within a

shared platform. The term virtual router is used to denote any network element with multiple interfaces that

forwards information through a network, while possibly processing it as it passes through. As such it also

encapsulates the functionality of a conventional Ethernet switch. PPS design has two main goals:

 To provide the necessary resources to the researchers in order to build their own virtual routers that can

operate at high speed.

 To ensure that virtual routers operating in different slices will run without interference.

The design of the PPS is quite different from the design of conventional routers and switches in that it must

allow bandwidth to be flexibly allocated among multiple virtual routers and provide third-party access to generic

processing resources that can be flexibly allocated to different virtual routers. Hence, PPS design requirements

include open hardware and software components, scalable performance, stability and reliability, ease of use,

technology diversity and adaptability, flexible allocation of link bandwidth and strong isolation between virtual

routers.

2.6.4.2 Implementation of virtualisation on Layer 2

Each Programmable Core Node (PCN) also includes a Circuit Processing System (CPS), which is a layered

collection of circuit-oriented elements, as shown in Figure 2.6.

Figure 2.6: CPS design

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

21

Researchers can access CPS at whatever layer provides the appropriate of abstraction for their work. The

layers of the CPS are described below:

 Wavelength Selective Switch (WSS): Data on one 10 Gbps wavelength can be switched to another

wavelength, or delivered to the Fast Circuit Switch. Data carried on a wavelength is totally transparent

for the WSS. User research equipment can connect directly to the WSS (shown on the left hand side of

Figure 2.6).

 Fast Circuit Switch (FCS): Circuits are multiplexed using TDM onto a 10 Gbps wavelength. Virtual

circuits of any bandwidth with granularity 1 Mbps can be established. Individual circuits can be

assembled from multiple basic slots within and across wavelengths. The FCS will connect to the WSS

via optical fibre. User research equipment can connect directly to the FCS (shown on the left hand side

of Figure 2.6).

 Programmable Framer (PF): The framer will frame packets inside circuits. SONET is used for default

framing format. The framer should have a null framing format in cases where the packets themselves

carry sufficient information for recovery at the destination. The PF will connect to the FCS via electrical

links or short-reach optics. User research equipment can connect directly to the PF (shown on the left

hand side of Figure 2.6).

 Packet Processor (PP): this corresponds to the PPS subsystem described above. PP can bypass the

PF layer and be connected directly to the FCS layer using optical fibres.

The CPS design is planned to be implemented using commercially available hardware.

2.6.4.3 Implementation of virtualisation on Layer 1

Layer 1 virtualisation issues are covered in previous section (2.6.4.2)

2.6.4.4 Implementation of computing virtualisation

Computing and storage services are provided by Programmable Edge Clusters (PECs). GENI plans to deploy

PEC components at 200 different sites on the GENI infrastructure.

PECs will consist of a rack equipped with commodity processors, high storage capacity, and connection to the

local network infrastructure. Each PEC will run virtualisation software that will implement slivers as virtual

machines (VM), each of which can be bound to some amount of processor, memory, disk, and link capacity

under the control of the Component Manager (CM). Two different virtualisation technologies are expected to be

deployed:

 Paravirtualisation, which gives slivers access to low-level hardware resources.

 Container-based virtualisation, which gives slivers access to a virtualised system call interface.

While PECs emulate computational clusters, they may also act as clients, individual servers, server farms,

ingress routers for testing of innovative network architectures, etc. Storage capacity and computational

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

22

capability of PECs will differ significantly from site to site. At the low end, a PEC will include 8-12 processors

and at the high end, a PEC might include 512-1024 processors.

2.6.4.5 OpenFlow-based virtualisation

GENI has recently adopted the OpenFlow technology for slicing (virtualising) its experimental infrastructure.

OpenFlow is an attractive technology for GENI users as it allows decoupling of the forwarding and decision-

making parts of a network element while giving full control over the decision-making (control) part to the

user/experimenter [OpenFlow2]. In a network infrastructure utilising OpenFlow technology, virtualisation is

enabled by deploying FlowVisor [FlowVisor], which allows multiple logical networks, each with different

addressing and forwarding schemes, to co-exist on the same physical infrastructure. A FlowVisor is a decision-

making entity within a network that maintains a policy engine, translation and forwarding mechanisms to fulfil

the following virtualisation goals:

 Isolation: Multiple virtual segments are created and allocated to user controllers within the same

physical substrate. Each virtual network segment is independent and hence gives users secure

isolation.

 Scalability and flexibility: FlowVisor supports the creation of highly diverse virtual networks, keeping in

mind the allocated resources like bandwidth, traffic, CPU, etc.

An experimental infrastructure utilising OpenFlow technology can be integrated within the GENI control

framework by adopting a specific aggregated manager, which is FlowVisor OpenFlow Aggregate Manager

(FOAM).

2.6.4.6 Management of virtualised infrastructure

The GENI infrastructure will be managed by the GENI operator by means of an operator portal. According to

the ITU Fault, Configuration, Accounting, Performance, Security (FCAPS) model, the following management

functionality is planned to be offered to the GENI operators:

 Fault management. GENI operators will be able to detect and repair problems on the GENI

infrastructure.

 Configuration management. GENI operators will be able to provision, configure and validate new

components of the GENI infrastructure.

 Accounting management. GENI operators will ensure that only authorised users and experiments can

use the GENI infrastructure as well as deploy policies on the usage of the infrastructure.

 Performance management. GENI operators will be able to monitor the utilisation and performance of

the GENI components.

 Security management. GENI operators will receive security-related information on the usage of the

GENI infrastructure and will be able to find out whether GENI is being attacked or the GENI Acceptable

Use Policy is being violated.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

23

According to [GENI-SFA], each component or aggregate supports a management interface that is used to boot

and configure them. This interface supports at least the following operations:

 SetBootState(Credential, State)

Used to set the boot state of a component to one of the following four values: debug (component trying

to boot), failure (hardware failure), safe (component available only for operator diagnostics), and

production (component available for hosting slices).

 State = GetBootState(Credential)

Used to learn a component’s boot state.

 Reboot(Credential)

Forces the component to reboot.

2.6.4.7 Control of virtualised infrastructure

Each slice has an interface that is used for creation and control. More specifically, each authorised user is able

to add or remove resources to the slice by using this interface.

2.6.4.8 Implementation of user interface

Researchers will interact with the GENI infrastructure via the researcher portal which allows researchers and

developers to specify the characteristics of their experiments and manage the experiments themselves. More

specifically the researcher portal is going to be the front-end of a set of services offering the following

functionality:

 Resource allocation: defines how the resources are shared among experiments (acquired, scheduled,

or released).

 Slice embedding: instantiates a researcher’s slice over a number of components.

 Experimenter workbench: provides a set of tools to create, configure and control researchers’

experiments.

2.6.5 Multi-domain support

By design, GENI can federate with other virtualisation frameworks, either following the GENI approach or not.

According to the GENI design, the interconnection will be implemented via the GENI clearinghouse entity and

provides a narrow set of interfaces that the other virtualisation framework must follow. Moreover, a basic GENI

assumption is that there will be multiple owners of the physical substrate in a federated fashion, forming the

entirety of the infrastructure.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

24

2.6.6 Testbed implementation and availability

Currently, GENI’s experimental test facilities comprise the following main parts:

 Backbone networks. These include major research networks in the USA interconnecting experimental

GENI testbeds. The backbone networks are:

○ Internet2. Internet2 provides the US research and education community with a dynamic hybrid

optical and packet network. GENI experimenters have access to 1 Gbit/s of dedicated bandwidth

from Internet2. Experimenters may create their own topologies using Layer 2 VLANs.

○ National Lambda Rail (NLR). NLR provides the testbed for advanced research at over 280

universities and private and US government laboratories. GENI experimenters have access to up to

30 Gbit/s of non-dedicated bandwidth on NRL. Experimenters may create their own topologies

using Layer 2 VLANs.

○ GENI OpenFlow Core. The GENI network core is a set of OpenFlow-capable switches in NLR and

Internet2. There are currently two standing VLANs (3715 and 3716) carried on ten switches in the

core. Experimenters may use these standing VLANs within the GENI core network without having to

coordinate with NLR or Internet2. Experimenters will however have to coordinate with their campus

and/or regional networks to connect to the GENI core. The two standing VLANS in the network core

also bridge between the Internet2 and NLR networks.

 Programmable hosts. These include a set of computing platforms and clients available for GENI

experimenters.

 Programmable networks: These are a set of local wired experimental networks capable of hosting

experimental tests. They are mainly based on either OpenFlow or PlanetLab technologies.

 Wireless testbeds. Currently a limited number of local wireless testbeds (mainly based on Wi-Fi

technology) are available for GENI experimenters.

2.6.7 Road map

Currently GENI is working on finalising the specification for an experimental facility to join the GENI

infrastructure. At the same time, GENI developers are working on implementing new aggregate managers to

support more diverse technologies such as WiMax.

2.6.8 References

[GENI] http://www.geni.net

[GENI-GDD-07-44] L. Peterson (ed.), “GENI: Global Environment for Network Innovations – Facility Design”, GDD-

07-44, March 2007

[GENI-Overview] Larry Peterson, Robert Ricci, Aaron Falk, Jeff Chase, “The Global Environment for Network

Innovations (GENI)”, April 2009

http://www.geni.net/wp-content/uploads/2009/04/geni-at-a-glance-final.pdf

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

25

[GENI-SFA] Larry Peterson, Robert Ricci, Aaron Falk, Jeff Chase “Slice-Based Federation Architecture”,

2010, GENI WIKI

[GENI-Intro] Harry Mussman, “GENI: An Introduction”, 2011, GENI WIKI

[GENI-System] [details to be provided]

[GN3-DJ1.4.1] M. Campanella, P. Kaufman, F. Loui, R. Nejabati, C. Tziouvaras, D. Wilson, S. Tyley,

“Deliverable DJ1.4.1: Virtualisation Services and Framework Study”

http://www.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-09-

225%20DJ1.4.1v1.0%20Virtualisation%20Services%20and%20Framework%20Study.pdf

[OpenFlow2] Nick McKeown, et al., “OpenFlow: Enabling Innovation in Campus Networks”, ACM SIGCOMM

Computer Communication, Apr 2008

[FlowVisor] Rob Sherwood, et al., “FlowVisor: A Network Virtualization Layer”, Oct 2009

www.openflow.org

2.7 PlanetLab/VINI/OneLab

The information about PlanetLab/VINI/OneLab is unchanged. Please refer to [GN3-DJ1.4.1] Section 2.7.

2.8 AKARI

Note that at the time of writing this document, only limited information is publicly available for the AKARI project,

in particular, a conceptual design document [AKARI-ConceptualDesign]. For this reason, no concrete

information on the project’s achievements can be provided, only information regarding AKARI’s vision.

Additional information about the virtualisation aspects that AKARI will support are available from a paper written

by Akihiro Nakao (University of Tokyo) [Nakao1] and from a talk by Kiyohide Nakauchi (NICT) [Nakauchi] about

the implementation choice that will likely be adopted once AKARI reaches its implementation phase. It is

therefore important to remember that the information about the virtualisation strategy reported here is not an

official statement from AKARI but a summary of the indications provided by AKARI’s partners.

2.8.1 Introduction

The Internet is the object of various projects whose aims are to identify the limits of the current networking

models and propose alternatives to circumvent them. There are two approaches when dealing with Future

Internet (FI) development. The first one is to develop enhancements with reference to the current situation.

Therefore some limitations have their counterpart answers. For example, IPv6 was initially developed in order

to cope with IPv4 address depletion, while mobile IP is meant to extend users’ mobility. An alternative is the

clean slate approach, where the IP protocol, whether IPv4 or IPv6, is not even part of the answer. AKARI is the

Japanese initiative related to Future Internet networks, the GENI and 4WARD projects being the US and EU

counterparts respectively.

http://www.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-09-225%20DJ1.4.1v1.0%20Virtualisation%20Services%20and%20Framework%20Study.pdf
http://www.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-09-225%20DJ1.4.1v1.0%20Virtualisation%20Services%20and%20Framework%20Study.pdf

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

26

AKARI’s vision considers virtualisation and particularly network virtualisation as a major technology enabling

the possibility to deploy various large-scale network ecosystems in parallel. As network virtualisation pushes

the limit of node virtualisation up to the core infrastructure, it is now even possible to deploy several instances

of potential Internet networks without relying on the Internet itself.

Network virtualisation would therefore promote:

 Competition between these potential network instances.

 Cooperation between these network instances.

 Easier comparison between these instances as they exist in parallel.

 Relevant experiment results as the technology can enable several large-scale testbed deployments

worldwide without incurring additional infrastructure cost.

2.8.2 Architecture overview

[AKARI-ConceptualDesign] describes high-level criteria for designing next-generation networks, using

virtualisation technologies among others.

Section 4.12 in [AKARI-ConceptualDesign] states that “Research on network services and architectures using

overlay networks has been popular recently in various countries. In particular, overlay network testbed

infrastructure is being installed at PlanetLab in the US, OneLab/OneLab2 in Europe, as well as in Japan (the

University of Tokyo and NICT), Germany, China, and Korea.”

The reasons behind the adoption of virtualisation technologies include the large-scale and geographically

dispersed nature of their networks, their inherent reliability in case of failure (thanks to easy cloning of virtual

resources), and the reduction of maintenance costs. They “enable the threshold (cost) for visiting a new

network business to be reduced by sharing this demonstration experimental environment. Therefore, an overlay

network testbed has great social significance as a core technology for creating innovative services and

performing early-stage development” [AKARI-ConceptualDesign].

[AKARI-ConceptualDesign] goes on to consider the different evolution patterns for a testbed based on

virtualised networks. However, no indications on how the virtualisation will be implemented are provided.

Among the open issues listed in the document ([AKARI-ConceptualDesign] Section 4.12.4), those related to

virtualisation include the following:

 Virtualisation layer. The layer in which virtualisation is to be performed has to be determined. Currently,

a tunnelling technique is generally considered as the virtualisation method. However, the means of

efficiently implementing tunnelling also has to be determined.

 Distributed administration of virtual domains (e.g. resource management and operational cost) has to

be considered differently from the hierarchical approaches used for physical infrastructures.

 Node virtualisation and network virtualisation: “Node virtualisation, which virtualises new-generation

routers or nodes that are co-located on routers, includes the recent operating system virtualisation, I/O

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

27

virtualisation (optimisation), and network virtualisation. Virtualisation of the network part must take the

problem of how to isolate and allocate existing physical resources into consideration more than

virtualisation.” [AKARI-ConceptualDesign]

 Engineering: “Reusing node construction technology, which was fostered in the field of active networks,

and linking it with operating system research will significantly contribute to the development of network

virtualisation technology.” [AKARI-ConceptualDesign]

More details on the adoption of virtualisation for a testbed network containing virtual routers are given in

[AKARI-ConceptualDesign] Section 6.2. The section discusses the design of a virtual router, running on a

Virtual Machine (VM) in an experiment. Node resources are abstracted in the data link layer (L2) and below

(the document gives no indication of how), with the purpose of implementing new protocols or new

architectures at the higher layers. The use case assumes that the virtual resources run in a completely isolated

environment without interference or efficiency degradation due to the activities of concurrent experiments

overlaying the same physical resources.

Additional requirements and open issues regarding the introduction of virtual routers in a testbed are introduced:

 Abstraction layer flexibility. “The layer where abstraction is performed (virtualisation is provided) must

be able to be freely set for each VM. For example, there must be a means of enabling a new L2

technology experiment and a new L3 technology experiment to be executed at the same time (on

separate VMs) within one physical router.”

 Mapping to a lower-layer multiplexing technology. “A mapping policy must be determined between

L2/L1 multiplexing technologies and resources that are isolated by network virtualisation at higher

layers. […] At the same time, the VMs must have enough versatility (interface abstraction) to enable

various lower layer technologies to be supported.”

 Resource management. Specific information modelling, resource monitoring and scheduling

technologies are required in order to map virtual resources on the physical substrate in an optimal way.

 Interconnection. The possibility to federate different virtual testbeds is required.

Some hints on what functionalities will be provided in AKARI network virtualisation can be deduced by the

following statement: “network virtualisation [is assumed] as a technique for isolating computational and network

resources […] to allocate them to a logical (virtual) network for accommodating multiple independent and

programmable virtual networks. We can always add isolation of the other kinds of resources such as storage,

but for the sake of simplicity, we intentionally do not include them” [Nakao1].

The document goes on to state the difference between VPN and network virtualisation by specifying the

features that the latter should provide: “(1) programmability: a virtual network may be equipped with

programmable control plane, (2) topology awareness: a virtual network may be topology-aware rather than

offering only connectivity, (3) quick re-configurability: a virtual network may be quickly provisioned and

reconfigured, (4) resource isolation: a virtual network may be allocated a set of computational and network

resources, and (5) network abstraction: a virtual network may accommodate a new architecture different from

the current Internet architecture.” [Nakao1].

The concept of a slice that is adopted is very similar to the one available in FEDERICA, with a strong emphasis

on isolation and reproducibility of the behaviour of the virtual resources: “A slice is an isolated set of

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

28

computational and network resources allocated and deployed across the entire network. Slice consists of

primitives such as a link sliver that conveys traffic, a node sliver that forks traffic with equipped programmability,

and an interface that connects a link sliver and a node sliver. No matter what format of data is transmitted and

conveyed on a slice, a node sliver can be programmed to parse, route and forward the data through a link sliver

to another node sliver. In other words, the abstraction model allows us to define an arbitrary data format,

whether to transmit data, e.g., via circuits or packets, how to route data, etc. within a slice. A final note in this

section is that although the term includes virtualisation, our primary goal is to ‘isolate’ resources for an

individual logical network using virtualisation techniques as a means, thus, virtualisation itself is not necessarily

our goal.” [Nakao1]

More hints about the implementation choices that AKARI could follow are reported in [Nakauchi]. Two possible

approaches are described: one relying on software-only network virtualisation, and one aiming at the

development of hardware devices capable of network virtualisation. The details about the two approaches and

the testbeds currently available for these technologies are described in detail in [Nakao2].

2.8.3 User community

Currently there are no hints about the user community that could benefit from access to the testbeds.

2.8.4 Mechanisms for providing virtualisation

Two approaches are described for providing virtualisation [Nakao2]:

 CoreLab: a software-based network virtualisation approach that adopts commercial off-the-shelf x86

servers and open source virtualisation software.

CoreLab supports different virtualisation methodologies: host-based hypervisors (KVM) and resource

containers (OpenVZ, LXC). It also allows Network Interface Controller (NIC) exclusive access to host

VMs via Peripheral Component Interconnect (PCI) pass through.

 VNode: a custom hardware device that enables network virtualisation through slicing of its cards and

servers. A VNode is composed of a Programmer part and a Redirector module. The Programmer is

made of high-end servers equipped with Fast-Path network processor cards and OpenFlow switches.

The Redirector is a 10 Gbit/s production router, with additional service module cards, and routes

packets according to the directives sent by the network processor cards.

2.8.4.1 Implementation of virtualisation on Layer 3

CoreLab implements virtualisation between slivers by using Generic Routing Encapsulation (GRE)-tap tunnels.

The switching facilities are emulated via OpenFlow Switch In A Slice (OFIAS) and virtual OpenFlow Switches

(vOFS) as slivers. The difference between the solutions is not stated.

The current VNode model supports GRE encapsulation. Developers state that it can be replaced with different

L2/L3 VPN implementations (e.g. MPLS, VLAN, and OpticalPath).

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

29

2.8.4.2 Implementation of virtualisation on Layer 2

CoreLab supports VLAN tagging. However no details are provided on how it is applied for separating traffic.

The current VNode model supports GRE encapsulation. Developers state that it can be replaced with different

L2/L3 VPN implementations (e.g. MPLS, VLAN, and OpticalPath).

2.8.4.3 Implementation of virtualisation on Layer 1

No information about this feature is available.

2.8.4.4 Implementation of computing virtualisation

The CoreLab approach is built on systems virtualisation, supporting KVM host-based hypervisor. Therefore,

CoreLab can virtualise computing resources.

VNode’s architecture includes four high-end servers capable of virtualisation but not intended for general

purpose hosts. It is used to control the Redirector device, Slow path, and Fast path network processor cards.

2.8.4.5 Management of virtualised infrastructure

No details are available. See Implementation of user interface below.

2.8.4.6 Control of virtualised infrastructure

No details are available. See Implementation of user interface below.

2.8.4.7 Implementation of user interface

The CoreLab virtualisation approach is equipped with a GUI for editing slices’ topology and a web-based VNC

for logging in a slice.

The VNode devices are equipped with a software control pane, while configurations for slivers, links, and

VNode’s interfaces are provided as an XML configuration file.

2.8.5 Multi-domain support

The available conceptual design document [AKARI-ConceptualDesign does not indicate whether a multi-

domain scenario will be considered in AKARI. One of the Points of Presence (PoPs) of the virtualisation

testbeds is located in South Korea, but no information on how the two domains are managed is reported.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

30

2.8.6 Testbed implementation and availability

There is one testbed for CoreLab network virtualisation: it shares the substrate of PlanetLab Japan with

additional network virtualisation support, involves more than 24 nodes, and is overlaid on multiple backbone

networks. No information about the availability of the testbed is given.

Four VNodes were deployed in September 2010. They are connected through JGN2Plus and JGN-X.

2.8.7 Current status and roadmap

Currently there are no indications about the roadmap for integrating the testbeds described in [Nakao2] into the

AKARI production environment.

2.8.8 References

[AKARI-ConceptualDesign] “New Generation Network Architecture: AKARI Conceptual Design”

http://akari-project.nict.go.jp/eng/concept-design/AKARI_fulltext_e_preliminary_ver2.pdf

[Nakao1] Akihiro Nakao, “Network Virtualization as Foundation for Enabling New Network Architectures

and Applications”, IEICE Transactions on Communications, Volume E93.B, Issue 3, pp. 454-

457 (2010), available at

adsabs.harvard.edu/abs/2010IEITC..93..454N

[Nakao2] Akihiro Nakao, “Architectures and tTestbeds eEnabled tThrough aAdvanced nNetwork

vVirtualization: CoreLab and VNode pProjects”, 3rd EU- Japan Symposium on Future Internet

http://ec.europa.eu/information_society/activities/foi/research/eu-

japan/eujapan3/docs/nakao.pdf

[Nakauchi] Kiyohide Nakauchi, “Introduction to Network Virtualization Technologies in Future Internet

Research”, Asia FI Summer School (August 26, 2010), available at

www.asiafi.net/meeting/2010/summerschool/p/nakauchi.pdf

2.9 GEYSERS

The information in this section is based on three GEYSERS deliverables: “D2.1 Initial GEYSERS Architecture

and Interfaces Specification”, “D3.1 Functional Description of the Logical Infrastructure Composition Layer

(LICL)” and “D4.1 GMPLS+/PCE+ Control Plane Architecture” [GEYSERS-D2.1, GEYSERS-D3.1, GEYSERS-

D4.1].

2.9.1 Introduction

GEYSERS’ vision is to qualify optical infrastructure providers and network operators with a new architecture, to

enhance their traditional business operations. Optical network infrastructure providers will compose logical

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

31

infrastructures and rent them out to network operators; network operators will run cost-efficient, dynamic and

mission-specific networks by means of integrated control and management techniques. In the GEYSERS

concept, high-end IT resources at users’ premises are fully integrated with the network services procedures,

both at the infrastructure planning and connection provision phases.

GEYSERS will define and implement a novel photonic network architecture, capable of provisioning “optical

network + any-IT” resources to network operators for end-to-end service delivery. GEYSERS proposes a

revolutionary vision under an evolutionary approach that follows a network-centric and bottom-up strategy. This

vision is based on partitioning the photonic network infrastructure to create specific logical infrastructures. Each

logical infrastructure will be controlled by an enhanced Network Control Plane capable of provisioning Optical

Network Services bundled with IT resources on an on-demand basis. Furthermore, the logical composition of

photonic networks will enable the GMPLS/ Path Computation Element (PCE) control plane to dynamically scale

infrastructure resources based on the Network Operator’s needs.

2.9.2 Architecture overview

The GEYSERS architecture presents an innovative structure by adopting the concepts of Infrastructure as a

Service (IaaS) and service-oriented networking to enable infrastructure operators to offer new IT + network

converged services. In the GEYSERS architecture, the service-oriented paradigm and IaaS framework enable

flexibility of infrastructure provisioning in terms of configuration, accessibility and availability for the user. At the

same time, the layer‐based structure of the architecture enables the separation of the functional aspects of

each of the entities involved in the converged service provisioning, from the service consumer to the physical

ICT infrastructure. Figure 2.7 shows the GEYSERS architecture reference model; each layer is responsible for

implementing different functionalities covering the full end-to-end service delivery, from the service layer to the

physical substrate.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

32

Figure 2.7: GEYSERS architecture

The Network Control Plane (NCP) is proposed as an extension of ASON/GMPLS and PCE, both in terms of

architectural elements and protocol objects/procedures. The NCP layer is responsible for the dynamic

provisioning of network connectivity services in support of the IT services managed by the Service Middleware

Layer (SML). The NCP is also in charge of the control/management of the logical network infrastructure

composed by the Logical Infrastructure Composition Layer (LICL), seen and controlled just as a physical

infrastructure. Since each logical infrastructure, controlled by an NCP instance, can include both network and IT

resources, the NCP strictly cooperates with the SML in order to coordinate and optimise the combined

utilisation of network and IT resources. In particular, the NCP is in charge of dynamic network service

provisioning, monitoring and recovery functions.

The novel Logical Infrastructure Composition Layer (LICL) allows/supports the partitioning of the physical

infrastructure, including both optical network and IT resources. It utilises a semantic resource description and

information modelling mechanisms for concealing the technological details of the physical layer from network

operators. Logical resources are represented seamlessly using a standard set of attributes which allows the

Control Plane to overcome the network and technology segmentation. Partitioning provides a 1:N logical

representation of a physical resource from one or multiple domains. The Logical Infrastructure Composition

Layer allows dynamic and consistent monitoring of the physical layer and binding/associating the right security

and access control policies. Furthermore, this layer constitutes application-specific logical infrastructures by

interconnecting the logical resources based on the virtual infrastructure operators’ requirements.

The Service Middleware Layer (SML) acts as an intermediate layer between applications running at the service

consumer’s premises and the enhanced NCP; it is able to translate the application requests and Service Level

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

33

Agreements (SLAs) into IT service descriptions specifying the associated network and IT resources and

triggers the provisioning procedures at the NCP. All service requests from the application side will be handled

by the SML and translated to technology-specific requests before the provisioning of services over the Virtual

Infrastructure.

At the lowest level in the GEYSERS architecture there is the Physical Infrastructure layer that comprises optical

network and IT resources from different Physical Infrastructure Providers.

The GEYSERS architecture shows how physical devices are partitioned and abstracted into virtual resources

that can be grouped logically, without order, as a Virtual Resource Pool (VRP). Virtual resources in the VRP

can then be selected and composed, creating a Virtual Infrastructure using the tools that the LICL provides to

Physical and Virtual Infrastructure Providers (PIP, VIP). Controllers in the NCP configure and manage the

virtual network resources; similarly, Virtual IT Node controllers at the Virtual IT Manager (VITM) configure and

manage virtual IT resources. The SML lies on top, offering the converged services.

2.9.3 User community

There is no user community behind GEYSERS. GEYSERS’ goal is to exploit infrastructure providers’ physical

resources.

2.9.4 Mechanisms for providing virtualisation

Work in this area is in progress. Final results are not yet available, though early results are expected to be

ready in the near future. However, the focus is on virtualisation mechanisms for the optical layer only.

2.9.4.1 Implementation of virtualisation on Layer 3

The research carried out in GEYSERS does not include a study of virtualisation on Layer 3.

2.9.4.2 Implementation of virtualisation on Layer 2

The research carried out in GEYSERS does not include a study of virtualisation on Layer 2.

2.9.4.3 Implementation of virtualisation on Layer 1

Optical network virtualisation is the creation of logical instances of optical network resources whose behaviour

is the same as their corresponding physical optical network resources. It enables multiple Optical Virtual

Network Infrastructures (Op-VNIs) over the same physical substrate while isolating them from each other. It is

achieved by partitioning a single physical resource or aggregating multiple physical resources. Optical network

virtualisation can support various granularities, including sub-wavelength, wavelength and waveband, as well

as any combination of these. In each virtual optical network infrastructure, different granularities can be

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

34

supported, such as sub-wavelength, wavelength, waveband, or a mix of different granularities. Optical network

virtualisation in GEYSERS relies on the abstraction of heterogeneous network resources, including nodes, links

and segments comprising both nodes and links.

Optical node virtualisation is a procedure that represents the optical nodes as virtual instances that inherit

critical characteristics from the physical entities. It relies on either the partitioning of a single optical node or the

aggregation of multiple optical nodes. Each virtual optical node has its own ports and switch capability.

Similar to optical node virtualisation, optical link virtualisation abstracts optical fibre links as virtual instances by

partitioning and/or aggregation. The partitioning of optical fibre links results in the granularities of sub-

wavelength and wavelength while the aggregation results in a granularity of waveband.

Several physically disjoint optical links or portions (slices) of links can be aggregated and virtualised together.

In this case the intermediate associated optical nodes or portions (slices) of node, which are required to

interconnect the physically disjoint links, will also need to be included in the aggregation of resources to be

virtualised. The resultant network virtual resource will be, in this case, a single virtual link in the virtual network

infrastructure.

2.9.4.4 Implementation of computing virtualisation

The virtualisation of IT resources in the GEYSERS project is still in the research phase. IT resources, in the

context of GEYSERS, are computing and storage nodes running user applications that are interconnected by a

virtualised network infrastructure. Users can request such IT resources that are in reality abstractions or

partitions of real physical resources. GEYSERS does not propose any innovative approach to IT virtualisation,

but exploits existing mechanisms for implementing virtual IT resources using the following paradigms:

 Abstraction (1:1). A physical IT resource can be exposed as a whole to the user who can customise it

and deploy his software. A user can, for example, reserve pre‐installed physical servers and use them

to install and run any applications, as is the case in experimental facilities and grid environments.

Storage‐only nodes can, for example, be exposed as 1:1 abstractions from a Network Attached Storage

(NAS).

 Partitioning (1:N). An IT resource can be partitioned into N virtual IT resources using common

virtualisation technologies, such as Xen, KVM, VMware, VServer, etc., where each partition is

represented as a virtual machine (VM) with computing and storage resources. These technologies use

different types of virtualisation to partition the resources. While OS‐level virtualisation (e.g. VServer)

offers interesting performance, it allows only limited isolation and customisation. By contrast, performing

emulation and hardware virtualisation (e.g. KVM, Xen), each VM has its own isolated execution

environment where any OS can run. Especially using the hardware virtualisation features of current

processors (Intel‐VT, Amd‐V), near to native computing performance can be obtained inside virtual

machines. As a drawback, device access, such as disk and network, is more costly as the device needs

to be emulated and accessing it involves the translation of all the instructions. This is where para‐

virtualisation (e.g. Xen, KVM/Virtio) helps, exposing virtual device drivers through which virtual

machines can access the hardware devices with only minimal overhead. Nevertheless, with para‐

virtualisation the OS of the VM needs to be modified in order to support the specific virtual drivers. For

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

35

storage, technologies such as Storage Area Network (SAN) and Network Attached Storage (NAS) can

be used to expose storage to be shared into virtual disks and used as different virtual IT resources.

Here, virtualisation is performed through the network, for example using Internet Small Computer

System Interface (iSCSI) protocol. Another solution is the Shared Storage Model (SSM) of the Storage

Network Industry Association (SNIA), which allows a storage device to be divided into several individual

ones, each using a different storage technology, and isolating the different virtual storages. Using

Network File System (NFS) or Common Internet File System (CIFS), several machines can access the

same physical storage device through the network, hence sharing a common file system.

 Aggregation (N:1). In contrast to partitioning, aggregation consists of exposing a set of physical IT

resources as a single virtual IT resource to the user. Such aggregation is possible with Versatile SMP

(vSMP), for example, which aggregates many physical servers and makes them appear to the OS like

one giant machine with many cores. Regarding storage nodes, it is possible to aggregate different disks

into a common logical storage pool. This can also be done using SNIA technology, allowing not only a

device to be divided into several individual ones, but also the aggregation of several physical devices to

make them appear as one single virtual device.

 Transformation (N:M). Physical IT resources can be transformed from a number of N to M by first

aggregating N physical nodes with a technology like vSMP and then virtualising the resulting node

using for example ScaleMP. This allows KVM and Xen virtual machines to be run on top of a giant

vSMP virtual machine. Regarding storage, a storage pool consisting of N physical disks can be

partitioned into M logical storage units, combining 1:N and N:1 paradigms, using for example SNIA

technology.

2.9.4.5 Management of virtualised infrastructure

The LICL offers a set of tools to a VIP in order to compose and manage virtual infrastructures from a range of

abstracted resources coming from different physical domains. The virtual infrastructure composition

functionality enables the VIP to offer virtual infrastructures to the different Virtual Infrastructure Operators (VIOs)

operating the virtual infrastructure. It enables any kind of virtual resource to be attached to or detached from a

virtual infrastructure. On the other hand, virtual infrastructure management comprises a set of functionalities

that guarantee coherence and consistency within the LICL. Management capabilities also allow the enhanced

GEYSERS NCP and VITM (or a proprietary Network Management System (NMS)) to control the virtual

resources.

The LICL management mechanisms also allow dynamic re‐planning of virtual infrastructures, offering the VIO

the capability to automatically request new resources or even release unused resources during the operational

stage of the virtual infrastructure (through the NCP or the SML). The NCP-LICL Interface (NLI) allows the NCP

to request the creation/modification of virtual nodes and virtual links during dynamic VI re-planning.

As a Virtual Infrastructure (VI) is a collection of Virtual Resources (VRs), the LICL offers management functions

at VI level or at VR level. At VR level, the different types of VR have different sets of management functions.

Examples of the types of resources under LICL management are virtual machines, storage and network

resources. The VIP itself can use these management functions in order to optimise the utilisation of its

resources but they are also provided to the VIO as operations. At VI level, VI‐wide management operation can

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

36

be performed through the LICL and provided by the LICL to the upper layers. They are of two types: batch VR

management operations, consisting of VR management operations applied to a set of the VRs constituting a VI,

and complex management operations, providing coordinated management operations such as the migration of

a part of the VI, or VI duplication.

The virtual infrastructure management operations are supported by a complex security framework. The

GEYSERS security infrastructure is proposed according to standard recommendations, best practices and the

previous experience of project partners.

The main functionalities of security services in GEYSERS security infrastructure at the LICL are as follows:

 Access control services: for the operation of multiple layers in a distributed environment and to protect

VIs and VRs after delivering to their users tenants.

 Policy management and enforcement: for managing resources across multiple domains. It assures

consistent, unambiguous policies for resources in a heterogeneous environment.

 Dynamic trust model implementing trust relationships between VRs and the VIO and among VRs within

a VI instance. This mechanism, along with access control, forms the basis for data confidentiality and

integrity functionalities.

 Secure session context management at LICL for resources during their lifetime. This functionality

defines security information formats for resource contexts, sharing security resource contexts to

components in the cross-layer architecture.

 Security services for data of VRs, VIs, Physical Resources (PRs) and communications at LICL

interfaces. These services can be built using existing security mechanisms that have been proved to be

safe, such as encipherment, digital signature, integrity, etc. The security services for LICL support only

key establishment and management uses for these mechanisms. Transport and message layer security

in LICL inter‐services communication can be achieved with the standard transport and message layer

security mechanisms such as WS‐Security, XML‐Security, SSL/TLS, HTTPS, IPSec that are typically

available as standard libraries as part of modern network control and management platforms. They can

call from LICL services/interfaces using the standard GSS‐API.

2.9.4.6 Control of virtualised infrastructure

When the LICL is operated over a physical infrastructure, the outcome is multiple isolated virtual infrastructures.

An instance of an NCP or a VITM has to be able to operate over each virtual infrastructure for the control and

provisioning of its virtual resources. Therefore, the LICL provides a set of tools and mechanisms for each virtual

infrastructure to allow the NCP and VITM to operate on the VI through an API. When the LICL creates a virtual

infrastructure, it also generates the Virtual Infrastructure Management System (VIMS). The VIMS will be used

by the NCP and VITM for the control and provisioning of virtual resources over a virtual infrastructure.

The interface between the NCP and the LICL for control operations on virtual infrastructure is called the

Connection Controller Interface (CCI). It is used for the configuration and monitoring of the virtual network

resources at a specific virtual network node during service provisioning, and runs between a GMPLS controller

and the VIMS handling the associated instance of virtual node.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

37

The CCI supports the following functionalities:

 Virtual network resource synchronisation.

 Support for energy-related parameters (e.g. power consumption, adopted technologies, environmental

impact indicators).

 Virtual network resource configuration.

 Support for advance reservation.

 Virtual network resource monitoring and notifications.

 Support of Authentication and Authorisation (AA) in coordination with LICL.

The SML to LICL Interface (SLI) is an interface between SML and LICL that is responsible for the control and

configuration of virtual IT resources and for the re-planning of the Virtual IT infrastructure. While the SML is

responsible for translating high‐level service provisioning requests into technical, executable service

provisioning action invocations, the LICL is responsible for receiving and coordinating these invocations

amongst the heterogeneous virtual infrastructure components.

Security and access control mechanisms are provided that ensure secure control operations over virtual

infrastructures.

2.9.4.7 Implementation of user interface

Two user interfaces can be identified in the GEYSERS architecture: the SML and the Network + IT Provisioning

Service User-Network Interface (NIPS UNI).

The SML exposes an interface to application providers and customers, such that the complexity of network and

IT provisioning is transparent to them. All service requests from the application side will be handled by the SML

and translated to technology-specific requests before the provisioning of services over the Virtual Infrastructure.

Business objectives for a specific application scenario are declared to the SML and translated into provisioning

requests understood by a Virtual IT Manager. The Virtual IT Manager is in charge of the end‐to‐end IT service

management and the virtual IT resources configuration.

This user interface is also used to send virtual infrastructure creation requests generated by applications or

consumers.

The application’s/consumer’s provisioning requests are passed to the NCP by means of the Network + IT

Provisioning Service User-Network Interface (NIPS UNI). It allows the cooperation of SML and NCP for the

coordinated on‐demand provisioning of network and IT resources. It supports multiple functionalities for the

NIPS management, including requests for service setup, tear‐down, modification and monitoring mechanisms.

The NIPS UNI supports the following functionalities:

 Advertisement of IT resources availability – processing, storage, memory and digital.

○ Support for power-consumption parameters.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

38

 On‐demand setup and tear‐down of network services in support of IT services.

○ Unicast, assisted unicast, restricted and full anycast connections.

○ Support for advance reservations.

○ Support for QoS constraints.

○ Support for authentication and authorisation procedures.

 On‐demand modification of pre‐established network services.

 Network and Network + IT service monitoring and notifications.

○ Support for cross‐layer service recovery.

2.9.5 Multi-domain support

The GEYSERS architecture natively supports multi-domain environments. However, the support is considered

at different levels:

1. Physical Infrastructure Providers (PIPs) offer their physical equipment for a composition of virtual

infrastructures. The PIP offers resources to Virtual Infrastructure Providers (VIPs). A single VIP may

handle a number of PIPs with their infrastructures. It is the VIP who composes a virtual infrastructure to

be spread among a number of administrative domains.

2. The VIP offers virtual infrastructures to Virtual Infrastructure Operators (VIOs). The VIO runs specific

services on top of this VI. From the architectural point of view, it is possible that two different VIOs,

operating different VIs, are expected to interconnect. This situation requires special mechanisms for

exchanging knowledge of network and IT topology and other relevant information to form a new specific

service spanning this multi-domain environment.

3. Once a VI is created, the VIO runs a dedicated control plane to allow an instantiation of advanced

network services in the network. It is expected the VIO will partition the VI into a number of routing

domains to optimise the configuration of the control plane on top of this virtual infrastructure. At the

same time, in order to enable multi-technology in a single administrative domain, the VIO partitions its

VI into multiple technology domains.

2.9.6 Testbed implementation and availability

GEYSERS plans to deploy a European-wide optical network testbed based on the existing infrastructures, e.g.

from the Phosphorus FP6 project and other national initiatives interconnected with GÉANT and GLIF networks.

These local infrastructures will offer optical switching access to high-performance IT facilities and network-

based IT resources. The GEYSERS testbed will be used for the deployment, validation and demonstration of

GEYSERS outcomes in real distributed optical infrastructure applications.

The deployment of the GEYSERS testbed is in progress. The first release of the testbed is expected to be in

September 2012.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

39

2.9.7 Current status and roadmap

GEYSERS is at the peak of the third and final year of the project. At this stage, the developments of the

GEYSERS software prototypes are reflecting all the design and studies performed in the first two years, which

mainly involve the architecture layering reference model design and definition and the studies of GEYSERS

business models. The software implementation progress has already started integration activities towards its

final deployment in the test-bed provided by the GEYSERS partners and interconnected through GEANT. The

final integration and prototypes validation is expected to happen during the third quarter of the year while the

fourth quarter will be devoted to demonstrations and dissemination of GEYSERS final product and results.

2.9.8 References

[GEYSERS-D2.1] GEYSERS deliverable D2.1 “Initial GEYSERS Architecture and Interfaces Specification”

http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_2.1.pdf

[GEYSERS-D3.1] GEYSERS deliverable D3.1 “Functional Description of the Logical Infrastructure Composition

Layer (LICL)”

http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_3.1.pdf

[GEYSERS-D4.1] GEYSERS deliverable D4.1 “GMPLS+/PCE+ Control Plane Architecture”

http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_4.1.pdf

2.10 NOVI

The information in this section is based on two NOVI deliverables: “D3.1 State-of-the-Art Management Planes”

[NOVI-D3.1] and “D4.2: Use Cases” [NOVI-D4.2].

2.10.1 Introduction

Networking innovations Over Virtualised Infrastructures’ (NOVI’s) vision stems from the acknowledgement that

computing and network infrastructure developments and virtualisation are rapidly changing the data

communication and computation environment. The legacy protocols and standards in these areas need to be

revised and extended beyond their original scope. This leap, in effect a paradigm shift, has to cope with the

high speed of transition towards the Future Internet (FI) as a comprehensive ICT cloud of composite services.

NOVI takes a research and engineering approach. Its objectives are to investigate and experiment on open

questions on monitoring, formal description and brokerage of virtualised resources within a federation of FI

platforms.

Resources belonging to various levels, i.e. networking, storage and processing, are in principle managed by

separate yet interworking providers. NOVI will concentrate on methods, algorithms and information systems

that will enable users to work within enriched isolated slices, baskets of virtualised resources and services

provided by federated infrastructures.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

40

NOVI will investigate federation at the data, control, monitoring and provisioning planes of constituent FI

infrastructures. A user ideally expects seamless and secure access to resources distributed across multiple

domains. The complex multi-domain nature of the federated infrastructure requires adoption of common

definitions and abstractions of virtualised resources. Users should be able to efficiently identify and correlate

virtual resources with desirable attributes and states, while providers should be required to export abstracted

views of their offerings, as dictated by scalability constraints and operational concerns. Within this context,

NOVI will propose and test resource description data models and abstraction algorithms, incorporating

Semantic Web concepts.

Access control is another key issue in federated environments. Authentication and Authorisation Infrastructure

(AAI) for user access is an area in which several architectures are being deployed, e.g. the federated schema

developed within the NREN world. Secure, authenticated access mechanisms need to transcend protocols and

descriptions of virtualised resources of FI federations, the scope of NOVI. NOVI in its experimental phase will

investigate options of federated AAIs as they fit its objectives.

Cloud end users are expected to be the administrative owners of their slices, empowered by the ability to

configure virtual networking interfaces, protocols and/or the distributed processing resources of the complex

holistic FI environment. They should have full access to their slice, including the right to upload/configure

monitoring tools, while having restricted access to data from passive and active monitors of the general

infrastructure. NOVI’s resource allocation algorithms will enable them to dynamically seek resources and

negotiate with federated management centres for slices with QoS guarantees, to obtain services of predictable

and deterministic behaviour. In FI research, this translates to the ability to plan reproducible experiments over

virtualised complex testbeds, such as the federated Future Internet Research and Experimentation (FIRE)

facility and the Global Environment for Network Innovation (GENI) experimental platforms. The NOVI

consortium will assess the effect on reproducibility of monitoring and brokerage methods as applied in

virtualised clouds exported by complex, inter-domain infrastructures. It is expected that on appropriate e-

infrastructure substrates, allocation of virtualisation instances, interconnected via virtual switches and logical

routers, can lead towards predictable measurable services. In addition, long-haul core connectivity may use

over-provisioned substrates, such as European NRENs and GÉANT, which implement a protocol suite richer

than what is widely available through the legacy Internet.

The effort will be conducted with a rapid prototyping cycle, using the cutting-edge experimental FIRE facility.

More specifically, the proof-of-concept phase will primarily rely on federating resources of the PlanetLab

[PlanetLab] Europe and FEDERICA [FEDERICA-DSA1.1] testbeds. End users of this phase will be selected

amongst NOVI participants (network research laboratories), acting as guinea pigs to promote adoption by the

wider FI community and to substantiate input to standardisation bodies. It is expected that some of the models

and methods developed within NOVI will be used to enrich the FIRE facility, in effect contributing to the creation

of a blueprint of FI federated infrastructures.

In summary, the specific research goals of the NOVI Specific Targeted Research Project (STREP) concentrate

on:

 How to federate different kinds of resources in virtualised e-infrastructures.

 How to formally describe virtualised network and cloud objects in a complex environment, assisted by

semantic methods. What ontologies are best suited to describe resources of different kinds.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

41

 How to build slices of virtualised infrastructure at the data, control, monitoring and provisioning planes.

How to describe their relationships and technical attributes.

 How to (co-)allocate resources with QoS attributes and how to set up the monitoring system to allow for

accountable, predictable Future Internet services.

 How to enrich the FIRE facility with federated models and methods enabling comprehensive and

reproducible experiments.

Figure 2.8: NOVI Innovation Cloud

2.10.2 Architecture overview

This information is taken from Section 4.2 of NOVI deliverable “D3.1 State-of-the-Art Management Planes”

[NOVI-D3.1].

A preliminary view of NOVI’s Control and Management Plane is shown in Figure 2.9. This is only a conceptual

view of its capabilities in terms of its APIs. Implementation of prototypes of NOVI Control and Management API

aims at enhancing federation approaches such as Slice Federation Architecture (SFA) and Teagle with

advanced services to facilitate slice control and management within a federation of heterogeneous virtualised

infrastructures.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

42

Figure 2.9: NOVI’s Control and Management Plane functionality: a preliminary conceptual view

As shown in Figure 2.9, NOVI plans to offer a NOVI API as a combination of the virtualised platform API and

the one developed for accessing novel NOVI Services, depicted as rectangles in Figure 2.9. These act as

control and management services and may need to interact in order to decide which management and control

actions need to be enforced within the managed environment. When control and management actions are

determined, networking federation approaches such as SFA or Teagle could be used to enforce them either

within the underlying virtualised infrastructure. NOVI’s initial work considers the implementation of methods

providing functionality to the following NOVI Services:

 An Intelligent Resource Mapping Service that provides the functionality to support Virtual Network

Embedding (VNE) of user requests within the physical substrate. Efficient sharing of virtualised

infrastructures requires techniques for solving the VNE problem. VNE provides a mapping of user

requests to specific substrate nodes and links. The Intelligent Resource Mapping Engine may consider

various alternatives for solving the VNE problem. For example, requests concerning individual

resources – slivers – may lead to the adoption of a greedy node-mapping algorithm, whereas user

requests for baskets of resources – slices – require solving the full VNE problem via appropriate

heuristic algorithms.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

43

 A Discovery Service is able efficiently to find resources based on their context, i.e. “find a computer

resource that has CPU utilisation less than 30% and is within the remote domain”. Peer-to-peer

algorithms could be exploited to implement the Resource Discovery to cater for a large-scale

environment consisting of many resource providers, i.e. authorities offering their resources within a

federation.

 A Monitoring Service enables NOVI users and administrators to retrieve information about the temporal

behaviour of the status evolution of specific resources that provide such information, and of the network

substrate via active network measurements. It is important that the Monitoring Services within NOVI

provide semantics-aware information. The output of monitoring calls can support Provisioning Services

with dynamic information to find the proper solution for a user’s resource request.

 A Policy Service is used to provide the functionality of a policy-based management system, where

policies are used to define the behaviour governing the managed environment. NOVI intends to provide

support for event-condition-action policies that enforce control and management actions upon certain

events within the managed environment, re-enforcing calls on other NOVI services with different

parameters. For example, an event-condition-action policy rule may re-trigger the Intelligent Resource

Mapping Service to find a new solution to the VNE if the network graph changes at run-time upon

failures or congestion. NOVI also plans to provide support for role-based access control policies which

could be used to define different classes of users, receiving different usage priorities on specific

virtualised resources.

 A Database Service holds information on slices and slivers within the managed virtualised infrastructure.

Virtualised resources are described based on the semantics of NOVI’s Information Model.

 Other NOVI services. These will be defined as an outcome of the Spiral Methodology that will be

followed by NOVI, where at the end of the first prototype development cycle (iteration or spiral), various

alternatives of NOVI required services to be integrated within the final NOVI prototype will be validated.

Figure 2.10 presents a conceptual view of NOVI’s Control and Management functionality in a simple federation

scenario, in terms of how NOVI APIs could be used to communicate control and management information

between two heterogeneous virtualised infrastructures. In Figure 2.10, both virtualised infrastructures (platforms)

A and B provide an external interface to each other, in terms of secure API calls within the federation. This

provides the functionality for one platform to call a remote method in another platform, using secure API calls.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework – Study
Document Code: GN3-12-123

44

Figure 2.10: NOVI’s Control and Management functionality in a federation scenario: a preliminary conceptual view

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

45 45

Figure 2.11: FIRE federated environment tailored to be used for NOVI experiments

As shown in Figure 2.11, external users will gain access to the federated testbed in two ways [NOVI-D3.1,

NOVI-D4.2]:

1. Via their campus connection to a host NREN and GÉANT for inter-NREN connectivity.

2. Via the public Internet.

In all cases, an authentication mechanism will be implemented within NOVI that will federate PlanetLab and

FEDERICA user authentication methods and credentials. Note that FEDERICA users currently log into a

Gateway as a proxy to the FEDERICA infrastructure, while PlanetLab users are authenticated by the PlanetLab

Europe federated access control.

In order to establish links between PlanetLab Europe and FEDERICA resources, a number of Virtual Switches

(vSwitches) will be designed and implemented within NOVI. These will operate at Layer 2, among virtual

machines, interconnecting their virtual Network Interface Cards (vNICs). Thus, different virtual networks can

operate in parallel, sharing the same physical resources but being isolated at the link layer. As a result, NOVI

will enable provision of extended slices as a service, with one slice assigned to PlanetLab Europe and the other

to FEDERICA.

	

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

46

Figure 2.12: vSwitch high-level view

In a virtualised environment, Virtual Machines (VMs) are allocated to users, each running an Operating System

referred to as Guest OS. The software layer providing the virtualisation is either hosted by a Host OS

(Fedora/VServer in PlanetLab) or runs on bare hardware (ESX VMware [VMWARE] in FEDERICA).

In the FEDERICA world, a slice is realised within the data plane. In contrast, PlanetLab only enables

deployment of slices at the application layer, as an overlay deployed on top of the legacy Internet.

Interconnection of VMs between PlanetLab and FEDERICA adheres to the different technology layers of the

two FIRE facilities. It will be supported via NOVI’s specific design and implementation of the vSwitch, as

illustrated in Figure 2.12.

2.10.3 User community

There is no user community behind NOVI. NOVI’s goal is to exploit infrastructure providers’ physical resources.

2.10.4 Mechanisms for providing virtualisation

Work in this area is in progress and not available yet.

2.10.5 Multi-domain support

The future NOVI architecture will support multi-domain environments. The federated testbeds offer their

physical equipment for the composition of slices. A single slice may consist of a number of virtualised resources.

It is the NOVI middleware that composes a slice to be spread among a number of administrative domains.

NOVI offers slices to users. A user runs specific services on top of the slice.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

47

2.10.6 Testbed implementation and availability

NOVI plans to deploy a European-wide optical network testbed based on existing infrastructures, i.e. from the

FEDERICA project and the private PlanetLab deployment. The NOVI testbed will be used for the deployment,

validation and demonstration of NOVI outcomes.

Figure 2.13: Topology overview

The interconnection of the PlanetLab Europe and FEDERICA infrastructures will evolve in a phased approach.

The phased approach will cover evolution issues in the data plane and management-control plane connectivity.

The baseline scenario will verify the possibility of interconnecting the infrastructure without online involvement

of the management planes of PlanetLab and FEDERICA. According to this scenario, three core FEDERICA

points of presence (PoPs) (PSNC, DFN, GARR) will be set up with a slice involving logical routers cloned from

their physical representatives, i.e. the Juniper MX 480 routers. This slice will engage PlanetLab virtualisation

functionality i.e. VServer [VSERVER] from remote sites at ELTE, NTUA and PSNC managed by the MyPLC

installed on a PSNC server. The data plane connectivity between the VServer and the logical router will be

implemented using GRE tunnels.

GARR

NTUA

DFN

PSNC

ELTE

Planetlab

Node

NTUA

Planetlab

Nodes

PSNC

MyPLC

PSNC

Planetlab

Nodes

FEDERICA

Physical links

PlanetLab-To-FEDERICA

Data Plane links

(aggregate)

PlanetLab Control

Plane links

NOVI slice A NOVI slice B

`
Juniper MX 480

Logical Router

PlanetLab sliver, eg. VServer

or NetNS

PlanetLab host (PlanetLab O/S)

Tunnel EndPoint at

FEDERICA Side

VLAN 1

VLAN 2

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

48

The Authentication and Authorisation functionality will be done separately, i.e. the user should be registered

twice in both infrastructures. The end user will get access to nodes by secure sessions. This simple scenario

assumes manual configuration and may not be suitable for large-scale environments. Thus, additional

scenarios will be considered.

The deployment of the NOVI testbed is in progress. The first release of the testbed was at May 2011.

2.10.7 References

[FEDERICA-DSA1.1] FEDERICA deliverable “DSA1.1: FEDERICA Infrastructure”

http://www.fp7-federica.eu/documents/FEDERICA-DSA1.1.pdf

[NOVI] http://www.fp7-novi.eu/

[NOVI-D3.1] NOVI deliverable “D3.1 State-of-the-Art Management Planes”

http://www.fp7-novi.eu/index.php/deliverables/doc_download/24-d31

[NOVI-D4.2] NOVI Deliverable “D4.2: Use Cases”

http://www.fp7-novi.eu/index.php/deliverables/doc_download/26-d42

[PlanetLab] http://www.planet-lab.org/

[VMWARE] http://www.vmware.com/

[VSERVER] Virtualization for GNU/Linux systems

http://www.linux-vserver.org/

2.11 OFELIA

2.11.1 Introduction

The current Internet is a mix of heterogeneous technologies, and different research has shown that the current

underlying Internet architecture is not sufficient to support the emerging applications in the future. In the past

there have been many creative ideas in the area of networks which didn’t quite make their way into the

production networks to produce a better Internet architecture. One of the main reasons why new ideas cannot

be tested on production networks is the fear, given the criticality of today’s networks, of the downtime to the

business, and also the closed support from the vendors. To overcome these obstacles to testing innovative

ideas and redesigning the Internet architecture, OpenFlow was developed.

OpenFlow [OpenFlow1] is an initiative by a group of people at Stanford University as part of their clean-slate

program to redefine the Internet architecture. The underlying principle of OpenFlow is to treat traffic as flows,

either packet-based or circuit-based traffic at different granularity. The idea behind OpenFlow is to have the

control functionality taken out of the equipment (i.e. switch, router) and given to a centrally managed or

distributed system, while retaining only data plane functionality on the equipment. This concept combines the

advantages of the switching speed of the ASICs (Application Specific Integrated Circuits) and computing

flexibility of the PC.

http://www.fp7-federica.eu/documents/FEDERICA-DSA1.1.pdf
http://www.fp7-novi.eu/
http://www.fp7-novi.eu/index.php/deliverables/doc_download/24-d31
http://www.planet-lab.org/
http://www.vmware.com/
http://www.linux-vserver.org/

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

49

The OpenFlow in Europe: Linking Infrastructure and Applications (OFELIA) [OFELIA] project is intended to

provide an infrastructure facility for conducting Future Internet experiments using OpenFlow technology. The

OFELIA infrastructure facility consists of five different islands spread across the Europe. Each island will host

different capabilities to offer different functionalities to the researchers.

OFELIA is funded by the European Union as part of its FP7 ICT work programme. The OFELIA project

consortium is made up several academic partners, commercial organisations (including NEC, ADVA Optical

Networking) and telecom operators. It began in October 2010 and it completed its first phase with an initial

setup in every. It is currently due to finish its second phase by interconnecting islands for enabling multi domain

test and experiments. The project is due to run until September 2013 and is expected to continue with new

partners joining the consortium.

2.11.2 Architecture overview

At the time of writing this document, OFELIA architecture is still under development. However the architecture

will be based on OpenFlow technology. A network is managed by a network-wide operating system running on

top of a controller (NOX) [NOX] which controls the data plane of the OpenFlow-enabled network equipment

through the OpenFlow protocol. The OpenFlow controller is a server that has the capabilities to host different

network management and control applications to effectively manage the network in a centralised or distributed

way. This separation between the control and data plane and the capability to treat packet and circuit traffic as

flows make the OpenFlow protocol a single standardised control for both packet and circuit networks. There

have been several attempts and proposals to control both circuit-switched and packet-switched networks using

the OpenFlow protocol. Figure 2.14 shows the unified architecture OpenFlow provides.

Packet

Switch

Packet

Switch

Circuit

Switch
Circuit

Openflow Protocol

App 1 App 2 App 3 App N

Network

Applications

&

Unified

Control

Plane

Openflow Controller

Data

Plane

Switchin

g

Unifying

Abstraction

Figure 2.14: OpenFlow architecture

Data
Plane
Switching

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

50

A key component of the OpenFlow architecture is the flow-level virtualisation of the network and its resources.

The OpenFlow API provides the programmability ingredients of virtualisation, where clients can program the

switches by flexibly defining flow according to their needs and inserting them into the flow tables. The

component used for providing virtualisation in an OpenFlow-enabled network is the FlowVisor [FlowVisor2].

FlowVisor is a special-purpose OpenFlow controller which allows the creation of slices from the underlying

OpenFlow physical infrastructure. Under the control of a Service Provider it can therefore provide virtualisation

isolation in a centralised way. The FlowVisor is housed outside the switch, leaving both the data plane and the

controllers untouched. The FlowVisor is transparent both to the switches and to the controllers and it enforces

traffic isolation by monitoring and rewriting OpenFlow protocol messages. Therefore, the switches think that

they are talking to a single controller, while each controller thinks that it is controlling its own set of OpenFlow-

enabled switches. OpenFlow-enabled virtualisation (i.e., FlowVisor) allows the transport service providers (e.g.,

network operators) to retain control over the transport network, while allowing clients (such as an ISP) to use

whatever automated intelligent control algorithms they may desire in their isolated slice of the network as

depicted in Figure 2.15.

Figure 2.15: OpenFlow virtualisation of physical infrastructure

The transport network resources provided to the Infrastructure Service Provider by the transport service

provider can be virtualised further by the ISP for its own needs. This means that it is possible to further

virtualise the client network via a FlowVisor, which is under the control of the ISP.

2.11.3 User community

OFELIA aims to provide isolated infrastructure slices (i.e. network + IT resources) for researchers and users

who want to deploy, test and evaluate a specific service, network protocol or network management application

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

51

at a scale of and in parallel with the production networks. OFELIA aims to provide the users with a realistic

experimental facility, which emulates the real/production networks, for carrying out the testing of next-

generation Internet technologies. However, OFELIA’s tools will enable interfacing with many experimental

facilities such as PlanetLab and GENI, thus expanding the user community base and the scale of the facility.

2.11.4 Mechanisms for providing virtualisation

OpenFlow aims to devise a new virtualisation technique, which can provide virtualisation of the network as a

whole rather than virtualising the network using well-known criteria at different layers in the OSI stack (e.g. L2

VPN, VLAN, L3 VPN, IPv4, MAC/VLANs). The virtualisation can be performed in a very flexible way by using

any header field at different layers and not only by using the well-known criteria. Currently, virtualisation of the

network using OpenFlow is achieved using a special-purpose OpenFlow controller called FlowVisor as

discussed in Section 2.11.2.

2.11.4.1 Implementation of virtualisation on Layer 3

At Layer 3, virtualised slices can be created using a specific IP address or IP subnet. Any testing on the

existing routing protocols or new routing protocol is written as an application and is run on top of the OpenFlow

Controller controlling the slice. No routing computations are done on the network devices. All the routing

computations are done on the centralised or distributed OpenFlow controller and the relevant flows are pushed

to the OpenFlow-enabled switches.

2.11.4.2 Implementation of virtualisation on Layer 2

Virtualisation at Layer 2 can be done by writing policies in the FlowVisor. Layer 2 virtualisation on the FlowVisor

can be either VLAN-based or MAC-based.

2.11.4.3 Implementation of virtualisation on Layer 1

Within the OFELIA project, a concept of a Layer 1 / Layer 0 slice parallel to a Layer 2 slice should be defined.

As Wavelength-Division Multiplexing (WDM) and Ethernet are different techniques, the slice definition is also

different. Within the project, different Layer 2 slicing concepts are being discussed (e.g. MAC-based, VLAN-

based). For WDM, an intuitive way of slicing is based on resource, which is a wavelength. A difference from

Ethernet is that a wavelength is a physical resource and it is not possible to allocate more lambdas than are

currently available. Things look different in Ethernet. For the flows it is possible to allocate abstract bandwidth.

The total allocated number may be higher than the real capacity of the link thanks to statistical multiplexing of

the flows. Two approaches may be considered:

 A slice defined as a fixed set of wavelengths.

 A slice defined as a number of wavelengths available from the whole spectrum.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

52

The latter approach is more flexible and in many cases may provide better network resources utilisation. No

implementation is currently available for optical virtualisation. In the later stage of the OFELIA project it will

become clearer how virtualisation at Layer 1 / Layer 0 (the optical layer) is implemented in the facility.

2.11.4.4 Implementation of computing virtualisation

OFELIA aims to provide an effective mechanism for server virtualisation and isolation such that each part of the

server can independently run a specific service and only be part of a specific isolated slice. In the first phase of

the project, the server virtualisation support will be provided using Xen hypervisor. The OFELIA control

framework will provide interfaces for reserving virtual machines based on Xen hypervisor. It is planned to

extend the support for other virtualisation technologies in the later stage of the project.

2.11.4.5 Control of virtualised infrastructure

While the underlying physical infrastructure is controlled by the physical infrastructure owner, the users have

total control over their slice and are allowed to perform activities within their slice.

2.11.4.6 Implementation of user interface

OFELIA will provide a GUI to the end user, which allows them to provision their logical network (slices). The

GUI is a researcher portal where the end users register themselves, create and modify the experiments. In

OFELIA the researcher portal is Expedient [Expedient], initially developed at Stanford University, used in the

GENI OpenFlow campus trials and now being extended to meet OFELIA’s needs. The process for reserving a

slice is as follows (from the user’s point of view):

 Step 1: Register in Expedient.

 Step 2: Register the aggregates (OpenFlow components and VMs) in Expedient.

 Step 3: Create a project.

 Step 4: Create a slice within the project and add aggregates.

 Step 5: Create a Flow Space in the slice, to be approved by the administrator.

 Step 6: After the Flow Space is approved, start the slice.

 Step 7: Carry out the experiments.

 Step 8: Delete the slice after the completion of the experiments.

The user can see the logical, sliced network on the screen after it has been reserved and carry out the

experiments. The Expedient dashboard GUI is shown in Figure 2.16.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

53

Figure 2.16: Expedient dashboard

2.11.5 Multi-domain support

OFELIA currently provides a single-domain network. In principle, it is possible to use resources from multiple

physical domains using the OpenFlow technology. In the later stages of the project, the OFELIA facility will

incorporate the optical and wireless domains. The virtual infrastructure that is created can be multi-domain–

based, where researchers can run experiments across different domains.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

54

2.11.6 Test bed implementation and availability

No public test bed is currently available for OFELIA. However, at the end of first phase of the project (June

2011), the testbed became available to external researchers to perform experiments over a L2 network built

using OpenFlow-enabled Ethernet switches.

2.11.7 Current status and roadmap

The first implementation of the OFELIA testbed was completed at the end of March 2011, enabling researchers

to conduct experiments within an island over a Layer 2 network. In phases II and III of the project there will be

integration of optical and wireless support in the facility and experiments can be run across the WAN over the

federated OFELIA islands. OFELIA islands will comprise of OpenFlow-enabled network equipment and

controllers providing an OpenFlow-enabled network infrastructure along with virtualised server end points to act

as source and sinks. In OFELIA, there are five islands across Europe.

2.11.8 References

[Expedient] http://yuba.stanford.edu/~jnaous/expedient/docs/admin/install.html

[FlowVisor2] http://openflowswitch.org/wk/index.php/FlowVisor

[NOX] www.noxrepo.org

[OFELIA] http://www.fp7-ofelia.eu/

[OpenFlow1] www.openflow.org

2.12 Google App Engine

2.12.1 Introduction

While most efforts at virtualisation have focused on providing an existing, familiar environment as an

abstraction on underlying hardware, Google has taken a different approach. The App Engine is a specific

environment, with specific development languages (Python and Java at the time of writing) and abstracted

hooks into Google’s proprietary architecture for data storage and networking.

This means that the scaling is handled transparently behind the abstraction. Environments based on machine

instances, such as VMware virtual machines or Amazon Elastic Compute Cloud (EC2), require the developer to

manage the scaling of multiple virtual machines. In Google’s environment, by accepting the extra restrictions on

the development environment, the scaling is itself abstracted away.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

55

2.12.2 Architecture overview

Google App Engine provides two development environments: Python and Java. This is Google’s specific

environment; most modules are available but, for example, some Python extension modules written in C cannot

be used in the App Engine environment.

Applications run in a secure environment known as the Sandbox, which provides the abstractions to Google’s

proprietary systems. Direct networking and filesystem operations are not available, and attempts to use those

functions in the development languages will raise an exception. Instead:

 For inbound connectivity, application code is run only in response to a web request, queried task, or

scheduled event; only http and https inbound connectivity is provided.

 For outbound connectivity, URL fetch and email services are provided.

 Storage is provided by means of the Datastore and Memcache services.

The Datastore is the primary persistent storage for App Engine applications. While there is an SQL-like

interface to it, it is not a relational database. Queries are limited in a way that ensures their performance scales

with the size of the result set returned, rather than the full data set; for example, every Datastore query must

have a pre-built index.

Access to the various services is both policed and billed by a system of quotas. A number of resources are

limited specifically to guard against overloading by problematic applications, such as the number of calls that

can be made per minute or per day to the Datastore API. Other quotas are set at a certain level for free use,

and can be increased for a cost at the developer’s request. For example, there is a daily limit of 1 GB outgoing

bandwidth for free usage, which can be increased up to 14,400 GB by enabling billing.

Authentication services are provided by means of Google accounts, and OpenID.

2.12.3 User community

Like many of Google’s products, App Engine is quite widely accessible, particularly due to the fact that

applications can be hosted within the free quotas at zero cost to the user. However, the interface to the

infrastructure is via a programming development environment; the users for whom Google is catering are web

developers who wish to abstract away the underlying hosting, networking and storage infrastructure that is

needed to support web applications.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

56

2.12.4 Mechanisms for providing virtualisation

2.12.4.1 Implementation of virtualisation on Layer 3

Google App Engine does not provide networking virtualisation of any sort, except in as much as networking and

hosting services are abstracted away from the developer by means of the provided APIs and provided on

Google’s own infrastructure.

2.12.4.2 Implementation of virtualisation on Layer 2

Google App Engine does not provide Layer 2 networking virtualisation.

2.12.4.3 Implementation of virtualisation on Layer 1

Google App Engine does not provide Layer 1 networking virtualisation.

2.12.4.4 Implementation of computing virtualisation

Google App Engine’s primary purpose is to provide computing virtualisation for web applications. All aspects of

hosting and networking below Layer 7 are abstracted away from the developer by means of the App Engine’s

developer APIs, and are provided on Google’s proprietary infrastructure.

2.12.4.5 Management of virtualised infrastructure

Access to the abstracted infrastructure is managed by means of the APIs, which are moderated by the quotas

described above. Usage of the infrastructure can be tracked along several axes, including those quotas, using

a control panel that is provided as part of the App Engine service.

2.12.4.6 Control of virtualised infrastructure

The underlying virtualised infrastructure is fully abstracted from the developer and user, so no control over the

infrastructure is provided except by means of those abstractions. Any attempt to perform low-level networking

or filesystem operations fails.

2.12.4.7 Implementation of user interface

Google App Engine applications are web applications, so end users generally access them through a web

browser.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

57

When developing the applications, developers use a development environment provided by Google that

simulates the App Engine environment (including services such as the Datastore) on the developer’s own

machine. Once the application is working satisfactorily in the development environment, it can be uploaded to

the App Engine where it is hosted, either using a free domain under .appspot.com, or using a domain already

registered by the developer.

2.12.5 Multi-domain support

Google App Engine does not support multiple domains; it is an interface to Google’s own infrastructure.

Because it is a specific and partly proprietary environment, there is the question of how easy it is to port apps in

and out of the environment. While there are certainly proprietary aspects to the service, very many of the

components are open source and one might expect to implement these easily elsewhere.

When developing an application with a view to porting it out of the App Engine environment later, one would

have to pay careful attention to the proprietary services, particularly the Datastore, to ensure that queries can

be adjusted to be served by other types of database (such as an SQL-based relational database.)

Porting existing applications that were not targeted at the App Engine may be challenging given the additional

restrictions noted above.

2.12.6 Testbed implementation and availability

While there is no separate testbed as such, the App Engine is free to use within certain quotas, and the

development environment provides a desktop-based simulation of the environment for development purposes.

2.12.7 Current status and roadmap

Google App Engine is a production service from Google, which attracts both free and paid usage. Ongoing

developments are documented in the App Engine Blog [GoogleAEBlog].

2.12.8 References

[GoogleAEBlog] http://googleappengine.blogspot.com/

[Google-Intro] http://code.google.com/appengine/docs/whatisgoogleappengine.html

2.13 Amazon Virtualisation

The information about Amazon virtualisation is unchanged. Please refer to [GN3-DJ1.4.1] Section 2.9.1.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

58

2.14 Summary Comparison

Table 2.2 on the following pages provides a summary of the virtualisation technologies described above. More

specifically, the following aspects are considered for each virtualisation technology:

 Protocol dependency: states whether there is any protocol dependency for the users of the virtualised

infrastructure.

 Network layer virtualisation: the OSI layers for which virtualisation is provided.

 Computing virtualisation: whether computing virtualisation is provided.

 Virtualisation technology: how virtualisation is achieved.

 Reason for deploying virtualisation: what is the added value that virtualisation offers.

 User community: the community that the virtualisation technology is targeting.

 Who manages the virtualised infrastructure. Two broad roles are identified:

○ Physical infrastructure owner – the party that owns the substrate infrastructure that is used for

implementing virtualisation.

○ User – the party that exploits the subset of the physical infrastructure that constitutes the virtualised

infrastructure.

 Management tools: what are the tools that are used for managing the virtualised infrastructure. It should

be specified if these tools are used by the physical infrastructure owner or the user.

 Offered services: the services that are offered to the users.

 Potential use in a multi-domain environment: whether deployment of the virtualisation framework is

possible in a multi-domain environment.

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework – Study
Document Code: GN3-12-123

59

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

P
ro

to
c

o
l

d
e

p
e
n

d
e

n
c
y

N
e
tw

o
rk

 l
a
y
e
r

v
ir

tu
a

li
s
a

ti
o

n

C
o

m
p

u
ti

n
g

v
ir

tu
a

li
s
a
ti

o
n

V
ir

tu
a
li

s
a

ti
o

n

te
c
h

n
o

lo
g

y

R
e
a
s
o

n
 f

o
r

d
e

p
lo

y
in

g

v
ir

tu
a

li
s
a
ti

o
n

U
s
e
r

c
o

m
m

u
n

it
y

W
h

o
 m

a
n

a
g

e
s

th
e

 v
ir

tu
a

li
s
e
d

in
fr

a
-s

tr
u

c
tu

re

M
a
n

a
g

e
m

e
n

t

to
o

ls

O
ff

e
re

d

s
e
rv

ic
e
s

P
o

te
n

ti
a
l
u

s
e

in
 m

u
lt

i

d
o

m
a
in

e
n

v
ir

o
n

m
e
n

t

FEDERICA None. A user
can define its
own
networking
technology

L3/2 Yes Inherent
virtualisation
capabilities of
L3/2 NEs (Junos
and software
router/switch)
and servers
(VMware ESXi)

Creation of
parallel
virtual
environ-
ments
(slices)
aimed at
supporting
research on
networking

Network
researchers

Physical
infrastructure
owner and/or
users

Traditional
tools. Tools
for slice-
oriented
provisioning,
management
and
monitoring
are under
development

Creation of
L2/L3 VPNs
(including
virtual
computing
elements)

Open to be
inter-
connected/
federated
with other e-
infrastructure
and service
management
frameworks,
e.g. IPsphere

MANTYCHO
RE

- L3:
configuration
of virtual
networks,
routing
protocols,
etc.
L2:
configuration
of services
for Ethernet
and MPLS
switches
L1:
configuration
of cards and
ports from
optical
devices

No Netconf Ti provide IP
networks as
a service

Three
research
user groups:
Danish
Health Data
Network,
British Ultra
High
Definition
Media group
and the Irish
Grid network

Research
users

MANTYCHO
RE GUI

Create links
between
routers,
define IP
addresses,
define
routing
protocols

No

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework – Study
Document Code: GN3-12-123

60

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

P
ro

to
c

o
l

d
e

p
e
n

d
e

n
c
y

N
e
tw

o
rk

 l
a
y
e
r

v
ir

tu
a

li
s
a
ti

o
n

C
o

m
p

u
ti

n
g

v
ir

tu
a

li
s
a
ti

o
n

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

R
e
a
s
o

n
 f

o
r

d
e

p
lo

y
in

g

v
ir

tu
a

li
s
a
ti

o
n

U
s
e
r

c
o

m
m

u
n

it
y

W
h

o
 m

a
n

a
g

e
s

th
e

 v
ir

tu
a

li
s
e
d

in
fr

a
-s

tr
u

c
tu

re

M
a
n

a
g

e
m

e
n

t

to
o

ls

O
ff

e
re

d

s
e
rv

ic
e
s

P
o

te
n

ti
a
l
u

s
e

in
 m

u
lt

i

d
o

m
a
in

e
n

v
ir

o
n

m
e
n

t

Phosphorus IP L1 No UCLPv2 based
on web service
technology

Resource
partitioning
and network
virtualisation
through
network
resource
slicing

NRENs and
e-science
community

Users Web-based
GUI

Static
connectivity
provisioning
Static
network
topology
creation and
control
Static
network
slicing

Yes

4WARD None. The
concept is
independent
of specific
protocols

L3 N/A N/A Co-existence
of multiple
architectures
and smooth
migration
path
New
business
models

Addressing
all users

Physical
infrastructure
owner

Implementa-
tion of a
“Virtualisa-
tion
Management
Interface”

N/A N/A

GENI None. A user
can define its
own
networking
technology

L3/2/1 Yes Virtualisation
middleware
(GENI
Management
Core – GMC)
and inherent
virtualisation
capabilities of
L3/2/1 NEs and
servers

Project focus Network
researchers

Physical
infrastructure
owner

Management
tools are
under
develop-
ment. They
are accessed
by the
physical
infrastructure
owner via the
GENI
operator

Researchers
can define
their own
experiments
over the
virtualised
infrastructure
via the
researchers
portal

N/A

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework – Study
Document Code: GN3-12-123

61

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

P
ro

to
c

o
l

d
e

p
e
n

d
e

n
c
y

N
e
tw

o
rk

 l
a
y
e
r

v
ir

tu
a

li
s
a
ti

o
n

C
o

m
p

u
ti

n
g

v
ir

tu
a

li
s
a
ti

o
n

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

R
e
a
s
o

n
 f

o
r

d
e

p
lo

y
in

g

v
ir

tu
a

li
s
a
ti

o
n

U
s
e
r

c
o

m
m

u
n

it
y

W
h

o
 m

a
n

a
g

e
s

th
e

 v
ir

tu
a

li
s
e
d

in
fr

a
-s

tr
u

c
tu

re

M
a
n

a
g

e
m

e
n

t

to
o

ls

O
ff

e
re

d

s
e
rv

ic
e
s

P
o

te
n

ti
a
l
u

s
e

in
 m

u
lt

i

d
o

m
a
in

e
n

v
ir

o
n

m
e
n

t

portal

PlanetLab/
VINI/OneLab

IP L3/2 Yes PlanetLab and
VINI virtualisation
tools

Infrastructure
slicing for
protocol
testing

Network,
application
and service
researchers
but not
limited to any
community

Slicing and
creation of
virtual
infrastructure
in a central
authority
basis.
Management
of each slice
can be done
by users
through a
dedicated
interface

Specific
management
tool and
interface is
available

Multiple
independent
network and
server slice
over same
infrastructure

Yes

AKARI IP for
CoreLab.
None for
VNode

L3/2 Yes CoreLab: Planet
lab tools with
GRE-tap tunnels
and virtual
OpenFlow
switch. VNode:
GRE
encapsulation,
support for
MPLS, VLAN,
and OpticalPath
foreseen (not yet
implemented)

Creation of
parallel
virtual
environ-
ments
(slices)
aimed at
supporting
research on
networking

Network
researchers

Physical
substrate
owner and/or
users

GUI and
XML
configuration

VNode
allows
creation of
L2/L3 VPNs,
VMs used as
routing
engines only
(no end-
nodes)

N/A

GEYSERS - L1: optical
network
virtualisation

Yes OpenNebula for
IT resources

To enable
optical
network
providers to

No user
community

Virtual
infrastructure
providers

Logical
Infrastructure
Composition
Layer (LICL)

Virtual
infrastructure
composition
Management

GEYSERS
architecture
natively
supports

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework – Study
Document Code: GN3-12-123

62

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

P
ro

to
c

o
l

d
e

p
e
n

d
e

n
c
y

N
e
tw

o
rk

 l
a
y
e
r

v
ir

tu
a

li
s
a
ti

o
n

C
o

m
p

u
ti

n
g

v
ir

tu
a

li
s
a
ti

o
n

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

R
e
a
s
o

n
 f

o
r

d
e

p
lo

y
in

g

v
ir

tu
a

li
s
a
ti

o
n

U
s
e
r

c
o

m
m

u
n

it
y

W
h

o
 m

a
n

a
g

e
s

th
e

 v
ir

tu
a

li
s
e
d

in
fr

a
-s

tr
u

c
tu

re

M
a
n

a
g

e
m

e
n

t

to
o

ls

O
ff

e
re

d

s
e
rv

ic
e
s

P
o

te
n

ti
a
l
u

s
e

in
 m

u
lt

i

d
o

m
a
in

e
n

v
ir

o
n

m
e
n

t

compose
logical
infrastructure
s

management
tools

functions at
virtual
infrastructure
level or at
virtual
resource
level

multi-domain
environment
s

NOVI Protocol
Independent

Layer 2
virtualisation

Imple-
mented
by
Vservers
and
VMWare
VMs

Virtual Machines
on VMWare
ESXi; Vservers
hosted on
PlanetLab;
Juniper Logical
Routers

To enable
multiple
users to
carry out
network
experiments
on their
partition
(slice) by
virtualising
the
underlying
physical
infrastructure
.

FIRE user
communities.

A dedicated
management
entity within
NOVI
project.

VMware
ESXi
Vsphere,
MyPLC,
various
monitoring
tools

Web GUI to
create virtual
network
topology;
User Access
Gateway for
using virtual
components
(virtual
nodes and
logical
routers); L2
federation
service
(Nswitch);
peering
service for
FEDERICA
and
PlanetLab
(implement-
ing SFA);
resource
monitoring
service for

It is designed
to offer
federation to
multi-
domain,
heterogen-
eous
infrastruct-
ures
managed
and
controlled by
different
administra-
tive bodies
(e.g.
PlanetLab
Europe,
FEDERICA)

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework – Study
Document Code: GN3-12-123

63

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

P
ro

to
c

o
l

d
e

p
e
n

d
e

n
c
y

N
e
tw

o
rk

 l
a
y
e
r

v
ir

tu
a

li
s
a
ti

o
n

C
o

m
p

u
ti

n
g

v
ir

tu
a

li
s
a
ti

o
n

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

R
e
a
s
o

n
 f

o
r

d
e

p
lo

y
in

g

v
ir

tu
a

li
s
a
ti

o
n

U
s
e
r

c
o

m
m

u
n

it
y

W
h

o
 m

a
n

a
g

e
s

th
e

 v
ir

tu
a

li
s
e
d

in
fr

a
-s

tr
u

c
tu

re

M
a
n

a
g

e
m

e
n

t

to
o

ls

O
ff

e
re

d

s
e
rv

ic
e
s

P
o

te
n

ti
a
l
u

s
e

in
 m

u
lt

i

d
o

m
a
in

e
n

v
ir

o
n

m
e
n

t

federated
environment;
distributed
database of
resources in
federated
environment;
Intelligent
Resource
Mapper

OFELIA None. Users
can define
their own
protocols.

L1/L2 (ideally
OpenFlow
tries to
flatten the
hierarchy of
layers)

Yes Inherent
virtualisation
capabilities of
Xen servers for
server
virtualisation (end
nodes) and
OpenFlow-based
FlowVisor
capabilities for
network
virtualisation

To enable
multiple
users to
carry out
network
experiments
on their
partition
(slice) by
virtualising
the
underlying
physical
infrastructure

Network
researchers

Physical
infrastructure
owners
and/or users.

At the
moment the
web GUI
(Expedient)
and the
management
tools are still
under
development

Researchers
can define
their own
experiments
over the
virtualised
infrastructure
via the
management
portals

Yes. The
facility will
incorporate
wireless And
optical in its
testbed in
the later
phase of the
project

Google App
Engine

App Engine
is optimised
for web
applications.
Every
inbound
request to
the app is

App Engine
does not
provide
network layer
virtualisation.

Yes The developer’s
applications run
in a sandbox that
almost entirely
abstracts away
the underlying
platform. There
are heavy

Cost
efficiency.
Improved
scaling.
Avoidance of
disk
bottlenecks
on a given

App Engine
is aimed at
developers
who wish to
abstract
away the
problem of
hosting and

The
virtualised
infrastructure
itself is
proprietary
and
managed
entirely by

The
application’s
administrator
has some
(but not
complete)
control over
how the

It is a hosting
service for
web
applications
that
specifically
target its
APIs.

The App
Engine is a
single-
domain
service, and
operates as
Platform as a
Service

Overview of Existing Virtualisation Technologies and their Usage

Deliverable DJ1.4.2:
Virtualisation Services and Framework – Study
Document Code: GN3-12-123

64

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

P
ro

to
c

o
l

d
e

p
e
n

d
e

n
c
y

N
e
tw

o
rk

 l
a
y
e
r

v
ir

tu
a

li
s
a
ti

o
n

C
o

m
p

u
ti

n
g

v
ir

tu
a

li
s
a
ti

o
n

V
ir

tu
a
li

s
a
ti

o
n

te
c
h

n
o

lo
g

y

R
e
a
s
o

n
 f

o
r

d
e

p
lo

y
in

g

v
ir

tu
a

li
s
a
ti

o
n

U
s
e
r

c
o

m
m

u
n

it
y

W
h

o
 m

a
n

a
g

e
s

th
e

 v
ir

tu
a

li
s
e
d

in
fr

a
-s

tr
u

c
tu

re

M
a
n

a
g

e
m

e
n

t

to
o

ls

O
ff

e
re

d

s
e
rv

ic
e
s

P
o

te
n

ti
a
l
u

s
e

in
 m

u
lt

i

d
o

m
a
in

e
n

v
ir

o
n

m
e
n

t

framed as an
HTTP
request.

restrictions on
the application
compared to
hosting on a
traditional VM.
For example,
there is no
persistent
filesystem in the
application
sandbox.

piece of
(shared)
hardware.
Consistent
state
between
instances
that are
being
arbitrarily
started and
terminated
as demand
requires.

scaling their
applications.

Google. The
developer
has some
control – for
example,
over the rate
at which new
instances are
spawned in
response to
demand –
but this is
limited to the
amount of
time a
request will
wait for an
existing
instance to
become free.

application is
run. In
particular,
the
administrator
can request
a minimum
latency. It is
also possible
to directly
inspect the
contents of
the datastore
and
memcache.

(PaaS) as
opposed to
the
Infrastructure
as a Service
operations
discussed
elsewhere in
this
document.

Amazon IP L3 Yes Amazon specific
tool (Amazon
Web Services-
based
virtualisation tool)

Efficient
sharing of
resources.
Increased
utilisation of
resources

Everyone.
Commercial
service

Users CLI, API Elastic
Compute
Cloud (EC2)
Simple
Storage
Service (S3)
Virtual
Private
Cloud (VPC)

No

Table 2.2: Summary comparison of virtualisation technologies

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

65

3 Drawback Analysis of Virtualisation of
Network Services

3.1 Introduction

The developments in Virtual Network Services (VNSs) have attracted significant interest and investment and

given rise to many activities around the world. Commercial applications are available, hardware vendors are

offering products to implement such services, and within the R&E community many development projects are

ongoing. Many of these solutions, services, products and projects are ready to deliver aspects of a technology

area that is still developing rapidly. This is true also for the GÉANT community: several NRENs have started or

are planning to implement certain solutions for a VNS (for example, HEAnet and NORDUnet are working on the

MANTYCHORE project, which offers virtual infrastructure services, and PIONIER, operated by PSNC, is

planning to use VNS in future). Within GN3, JRA1 Task 4 is developing an infrastructure virtualisation

mechanism for GÉANT, where VNS is the core service the mechanism will provide. The Task has also

undertaken a drawback analysis, to identify possible problems or obstacles to implementing a VNS.

This section of the deliverable identifies several areas that could be sources of drawbacks to providing a VNS.

Each potential drawback is analysed for its impact on the introduction of a VNS to clients/researchers. The

methodology is described in Section 3.2. In Section 3.3 the areas are divided into technical issues, service

issues and (more general) provision issues.

A preliminary analysis suggests that the possible drawbacks of virtualisation could be in details that are very

sensitive to the transport layer (L1, L2, L3) of the virtual network/virtual service. The layer-dependency covers

many areas such as hardware, software, costs, user demands, etc. This study does not separate the analysis

according to such specific layer dependency. This might be done in an extra study, if required.

3.2 Drawback analysis methodology

The drawback analysis was conducted to identify risk areas associated with the introduction of Virtual Network

Services.

A first analysis shows that the drawbacks can be categorised as follows:

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

66

 Technical issues: associated with the requirements and availability of hardware and software.

 Service-oriented issues: concerning the required service aspects seen from the user and the provider

point of view.

 Business issues: concerning the costs and the competing services (alternatives).

Each type of drawback is assessed according to the probability that it will materialise as a showstopper and

prevent the introduction of a VNS:

 Low: if its probability is lower than 25%.

 Medium: when the probability ranges from 25% to 50%.

 High: if the probability is higher than 50% but lower than 75%.

 Very high: if the probability is more than 75%.

All drawbacks also have a severity level associated with them. This is an indicator of the impact of an actual

problem on the introduction of a VNS. In some cases it might also reflect the threshold for the adoption by the

end user. The severity is classified as:

 Devastating.

 Serious.

 Medium.

 Tolerable.

 Insignificant.

The term “user” in this analysis refers broadly to GÉANT and NREN users. An initial view of what NREN users

might use the virtualisation service for was obtained from the requirements survey, documented in [GN3-

DJ1.4.1] Chapter 3.

3.3 Drawback Areas

3.3.1 Technical Issues

3.3.1.1 Hardware environment

In principle the hardware required for the provision of a VNS seems to be available (CPU, interfaces, memory,

etc.), even within commercial products. It is probable, however, given the limited experience with VNS to date,

that some hardware components can still be enhanced/adapted to provide a more effective VNS (e.g.

performance, resource isolation), but this is not a major aspect (apart from the possible extra cost) that will

hinder the introduction of VNS.

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

67

Thus the number of further special requirements, compared with what is already available, is low. The available

general-purpose hardware (including updates/upgrades) will mostly fulfil the requirements; sometimes special

types of hardware (e.g. line cards) might be required for a good level of VNS, but this is mainly a cost problem.

Drawback analysis:

 Likelihood: Low.

 Severity: Tolerable.

3.3.1.2 Software environment

There is a need for a variety of special software to provide, manage and operate the VNS. This special virtual

software must be ordered, implemented, operated, and maintained. The amount and quality of this software are

strongly linked to the service issues (see Section 3.3.2 below).

The required software is or will be available and it has or will have the required stability for operation, etc.

Development is still ongoing and the specific situation for a certain environment must be analysed in detail,

especially with regard to the layer of the VNS. Examples of areas of software that still need further development

are:

 Resource information and allocation (including limitations of usage).

 Slice/service isolation.

 Missing monitoring features within the virtual environments.

In summary, the required components will be available, but certainly with varying levels of quality (which is

always true for software). Insufficient management components will make VNS deployment much harder.

To judge the status, the quality and potential risks of the software more effectively, the drawback analysis

distinguishes two levels: one level that relates to the single piece of software – to the atomic requirement – and

another that relates to the whole integrated service environment.

Certainly the atomic aspects are already solved quite well and the assessment is as follows:

Drawback analysis:

 Likelihood: Low.

 Severity: Low.

Looking to the whole integrated aspect the risks seem to be a little higher:

Drawback analysis:

 Likelihood: Medium.

 Severity: Medium.

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

68

3.3.2 Service Issues

In a virtualised infrastructure, there will be (at least) two levels of control and management:

 Control and management of real physical infrastructure.

 Control and management of virtual infrastructure (maybe even recursive).

These two levels, including possible recursive levels, may or may not belong to the same administration entity.

The multi-level aspect of control and management can impose a risk on the overall reliability and

control/management performance of the network, and may influence each of the items below.

3.3.2.1 Operational issues

The operation of VNS will require:

 Additional manpower (probably not significant).

 Additional knowledge.

The provision of VNS requires additional effort for installation, configuration, maintenance, etc.

A major aspect is the increased complexity of the whole operational environment (e.g. additional service layers

and network layers). An important requirement is that the provisioning operation related to the service VNS1

should not impact service VNS2. However, there might be side effects (interferences, interruptions) on other

virtual networks of the same environment (e.g. performance degradation) and even on other network services

in the same physical environment.

Even the (theoretical) isolation/separation of services cannot exclude such effects for sure. To minimise such

side effects requires robust technical environments and operational processes. This will help to identify the

issue and then where the responsibility for solving the problem lies.

In summary the operational requirements will certainly increase but with medium impact.

Drawback analysis:

 Likelihood: Very high.

 Severity: Medium.

3.3.2.2 Security – general

From a user point of view, virtualisation means the parallel but seamless use of services/components with other

users. Users are in principle interested in having strict borders between themselves and other users; they like

to have the impression of being the sole user of a dedicated service. On the other hand, among users in non-

business environments there is a certain lack of concern about privacy/security aspects, as long as their

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

69

service requirements (easy to use, inexpensive, always available) are fulfilled (e.g. the ongoing reports about

privacy problems in Facebook, Google, etc. do not really worry them).

This is different, of course, in business environments (i.e. for companies), but also in big-science project

environments within the research area (e.g. LHC). Maybe there is a useful distinction to be made between the

awareness of security risks among companies/organisations/projects and individuals.

Security will be a major issue for the service provider, especially to avoid the introduction of back doors from

the virtual environment to their network. However, it is probably not that important for the users in the NREN

community (beyond the normally available security).

Another but related issue is to identify who should solve a security problem. Is the service provider also

responsible for the inner aspects of a VNS that he gave to the user/researcher? What are the borders between

both parties?

Drawback analysis from user point of view:

 Likelihood: Medium.

 Severity: Medium.

Drawback analysis from provider point of view:

 Likelihood: High.

 Severity: High.

3.3.2.3 Security – user direct management

Another aspect of security arises if in some virtual network environment users are allowed to define their own

resources. This results in a certain kind of intervention in the virtual environment, which is related to security

aspects. Here, the service provider has to define how much influence a user may have towards the definition of

the virtual environment (and its alteration), i.e.

 What are the conditions, restrictions, limitations to accessing the virtual-service?

 What are the conditions, restrictions, limitations to accessing the virtual-environment, especially the

management of virtual-components?

Drawback analysis from provider point of view:

 Likelihood: High.

 Severity: High.

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

70

3.3.2.4 Failures, interruptions

Which kinds of special problems exist within virtual environments? Are potential failures limited to the virtual

environment of the users? Certainly not always, as total isolation will never be fully reached. Could failures

within the VNS influence other services (outside of the VNS)? Again, sometimes probably yes.

Thus, there will be the open problem of what is the impact of problems on neighbouring virtual environments or

other services? Even if actual failure is not caused, performance degradation could occur.

Especially if failures impact several services, the question arises of who is responsible for which failures and

who has to start which actions to solve the problem?

A benefit of virtualisation is that the virtualised systems can take advantage of the host system’s backup and

recovery mechanisms. This means, however, that the host system’s backup and recovery must be entirely

robust. If there is a catastrophic problem, then the VNS may become a global single point of failure for many

systems.

Drawback analysis:

 Likelihood: Low

 Severity: Tolerable

3.3.3 Business Issues

Even if the technical and service aspects outlined above could be solved, there might be other, business

factors that restrict or hinder the introduction of VNS, such as those relating to the finding of an appropriate

niche for a VNS, its cost, and independence from specific vendors (i.e. the extent to which an open system

environment can be achieved).

This analysis is looking at users neither as part of commercial companies nor as private persons (users of

commodity services) but as part of the R&E community (perhaps making a distinction within that group between

big science projects such as LHC and individual interactions). This means it is not discussing the introduction of

VNS in general but within the NREN community in particular, and the following aspects must be considered

with regard to the specific goals and requirements of the NRENs.

3.3.3.1 Business case

A new service must offer added value for the user compared to existing services, and address a real demand.

Thus it is important to be able to answer positively to such questions as:

 Does the service provide demonstrable added value to users?

 Does the service offer something new/different compared to existing services?

 Is the service one for which users are prepared to be charged extra costs?

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

71

It is also important to consider the positioning of the service relative to others and its potential impact on them,

by answering questions such as:

 What are the competing services?

 Will there be cannibalism from other services in terms of both overlapping or appropriated functionality

and users?

Ultimately, user requirements and user demand are the most important criteria for judging the feasibility of a

VNS. To find the appropriate niche considering all the questions above could be a major problem.

Drawback analysis:

 Likelihood: High.

 Severity: High.

3.3.3.2 No match with market demands

As part of the general business case outlined above, the offered VNS could have implementation properties

(e.g. service aspects, costs, complexity of use) that do not match market demands/expectations. This could

hinder its introduction, even if in principle a niche has been identified, and make the investment worthless. A

similar outcome could result from the appearance of other, more successful commercial solutions on the

market.

Here one has to consider the special NREN community. A VNS should (and certainly will) be oriented towards

the specific requirements of the NREN user, seen as a part of a scientific community (and not as a general

private user). Thus the assumption is that an NREN VNS will not be similar to or in competition with the already

available commercial services (e.g. from Google, Amazon, etc.) but will be directed to special needs and

implemented with special properties.

Given the above assumption, and as, at the beginning, the investment will certainly be limited, the potential loss

on investment will also be limited.

Drawback analysis:

 Likelihood: Medium.

 Severity: Tolerable.

3.3.3.3 Costs

A virtual service will generate some extra costs. The amount of such extra costs depends on the kind of service

(e.g. which layer). An open issue will be the cost model towards the users; the two extremes are full costs or

zero costs (i.e. hidden in other service offers). However, defining the appropriate cost model is outside the

scope of this report and must be discussed elsewhere.

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

72

The cost elements include:

 Capital expenditure (hardware, software).

 Operational expenditure (including knowledge enhancement).

It is probable that operation and maintenance will not generate significant extra costs, provided the technology

and the operational processes stay simple compared with non-virtual services. Otherwise the costs could easily

increase considerably.

In summary, the cost issue will certainly arise but the additional costs should not be significantly high.

Drawback analysis from provider point of view:

 Likelihood: High.

 Severity: Medium.

3.3.3.4 Inefficient use of resources

A primary objective of virtualisation is to allow the efficient use of physical resources by abstracting the

resources in such a way that they can be allocated on demand and returned when not needed. This can allow

physical resources to take advantage of statistical multiplexing in a way similar to IP traffic’s efficient use of

large-capacity pipes.

However, if resources are allowed to be reserved – for example, if Layer 2 circuits are created with guaranteed

bandwidth – then the opposite effect can take place: reserved resources might not be used, yet they are

unavailable to other applications. Thus, in reality, certain operational restrictions will probably be implemented.

Inefficient use of resources also relates to aspects already discussed, e.g.:

 The quality of the service, which might suffer.

 The rising costs for the service provider.

 The cost model for the user, to prevent such inefficient use.

Drawback analysis:

 Likelihood: High

 Severity: Tolerable

3.3.3.5 Delayed service introduction

There seems to be no issues about the time of service introduction.

Drawback analysis:

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

73

 Likelihood: Low.

 Severity: Insignificant.

3.3.3.6 Standards and maturity

Currently, there are a number of vendor-specific commercial VNS available. At the same time, many people

around the world are working towards generic solutions, independent of vendors, realising a kind of open

system. However, such solutions are not yet mature enough for general and easy operation.

Users therefore currently have two options. They may either use a vendor-specific solution, which cannot

readily be adapted to special needs and must be taken as it is. This not only leads to technical restrictions but

also includes political aspects, e.g. becoming dependent on special vendors (e.g. security, even espionage).

On the other hand, they could implement open solutions which are still under development and require a large

amount of operational support.

Both options restrict the extensive, flexible and easy operation of VNS. That might change in the (possibly near)

future with regard to an open solution. However, the current situation has some bearing on the questions

mentioned in Section 3.3.3.1 Business case. In the meantime, the following assumptions have been made:

Drawback analysis:

 Likelihood: Medium.

 Severity: High.

3.3.3.7 Organisational aspects

Experience has shown that new technologies can influence organisational structures. In the NREN environment

the introduction of VNS could, for example, change the role of computing centres, which could have a retarding

influence to keep things as they are. However, that aspect remains very vague and is mentioned here mainly

for completeness.

Drawback analysis:

 Likelihood: Low.

 Severity: Insignificant.

3.4 Summary Table

Table 3.1 below presents a summary of the drawback analysis.

Area Aspect Likelihood Severity

Technical Hardware environment Low Tolerable

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

74

Area Aspect Likelihood Severity

Software environment:

 Atomic requirement

 Whole integrated service environment

 Low

 Medium

 Low

 Medium

Service

Operational Very high Medium

Security – general:

 User point of view

 Provider point of view

 Medium

 High

 Medium

 High

Security – user direct management:

 Provider point of view

 High

 High

Failures, interruptions Low Tolerable

Business

Business case High High

No match with market demands Medium Tolerable

Costs:

 Provider point of view

 High

 Medium

Inefficient use of resources High Tolerable

Delayed service introduction Low Insignificant

Standards and maturity Medium High

Organisational aspects Low Insignificant

Table 3.1: Drawback analysis summary

3.5 Discussion and Conclusions

This drawback analysis has considered areas of possible problems that could hinder the introduction of Virtual

Network Services as a major service component of the NREN service portfolio. The orientation towards the

NRENs takes into account their special role and situation. Several of the problems discussed above are also

true for other service providers, but some are especially valid for NRENs, such as user demand or service

cannibalism in relation to their existing services.

Specifically, no major issues have been identified with regard to technical features; the hardware is able to

provide the necessary capabilities and the general software is also able to provide such functionalities.

However, apart from these purely technical aspects, somewhat larger problems still exist, especially with regard

to the operational environment, the maturity of solutions and the area of security. These items are less

important when dealing with project-internal or otherwise limited service requests, but they become very

important for full service provision.

Drawback Analysis of Virtualisation of Network Services

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

75

A further area of uncertainty relates to real user requirements and possible service cannibalism seen from the

point of view of NRENs. Users are not interested in Virtual Network Services for their own sake; they are

interested in network services that fulfil their demands. Such demands, with their requirements for functionality,

flexibility and cost, might be provided via traditional services or more easily via virtual networks. However, the

preferred solution will be evaluated by the service provider (in this case, NREN) not by the users (except in so

far as the users get the service they require).

There are a number of further aspects (e.g. efficiency, troubleshooting, organisational items) that are less

important. Such items must be improved but they play no central role for or against the introduction of a Virtual

Network Service.

As a conclusion, there are no insuperable obstacles to the introduction of virtual networks. However, there are

a number of small, medium and even sometimes large drawbacks to its full introduction. Thus it will always be a

matter of evaluating the advantages and added value compared with traditional services, and of assessing the

impact of the gaps that still exist in some areas (e.g. operation, security) when considering the operation of

Virtual Network Services currently or for the foreseeable future.

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

76

4 GÉANT Virtualisation Service (GENUS)

4.1 Introduction

Virtualisation, in general, is by now a common activity. Operating platforms, software, storage and/or

processing resources are being provided as virtualised services (by Amazon and Google, for example).

Generally, the layers seen in the market are Application, Platform and Infrastructure, which define three generic

and well-known business models: Software as a Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS), respectively. Cloud computing is related to the above business models.

Network virtualisation provides the basis for the so-called Network as a Service (NaaS). The concept behind

NaaS is analogous to the widespread IaaS: provide the consumer with simple but powerful tools to use and

operate the infrastructure resources, together with attractive rates and payment models (e.g. pay as you go).

Unfortunately, NaaS is lagging behind, mainly due to the lack of flexible and automated commercial services

such as lambdas, Ethernet and IP services. It is in order to alleviate this fact that JRA1 Task 4 is creating a

mechanism for federated virtualised networks called GÉaNt virtUalisation Service (GENUS).

This chapter defines a virtualisation service within the context of GÉANT and proposes an approach to its

implementation within GÉANT and associated NREN infrastructures. The recommendations in this chapter are

based on the results of the comprehensive study of existing virtualisation technologies reported in Chapter 2

and the initial requirements analysis reported in [GN3-DJ1.4.1] Section 3.

JRA1 Task 4’s proposal for a GÉANT virtualisation service aims to take advantage of each of the existing

relevant European projects and initiatives (the Task participants’ involvement in these projects means they are

well placed to leverage the first-hand knowledge and experience gained), while providing the capability to

incorporate the outcome of any future relevant projects and frameworks. JRA1 Task 4 is not aiming to promote

a specific solution or framework for the GÉANT virtualisation service. Instead, it aims to propose a solution for

integrating and interworking existing virtualisation mechanisms and solutions at different layers, leaving the

choice of suitable virtualisation technologies for each domain to individual NRENs.

JRA1 Task 4 has defined the required virtualisation services within GÉANT and associated NRENs in four

different layers, as described below:

 Computing virtualisation: aggregating several computing servers or partitioning a server into several

independent servers by means of an operating system.

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

77

 Layer 3 network virtualisation: creating Layer 3 (IP)-related functionalities on any type of hardware. This

includes partitioning a Layer 3 router into several independent routers to create a Layer 3 virtual

network topology.

 Layer 2 network virtualisation: creating Layer 2 (Ethernet)-related functionalities on any type of

hardware. This includes partitioning a Layer 2 switch into several independent switches to create a

Layer 2 virtual network topology.

 Layer 1 (optical) network virtualisation: creating a Layer 1 network topology by binding together Layer 1

resources (e.g., SDH timeslots, wavelength, fibre). This includes partitioning (slicing) of Layer 1 devices

such as optical switches.

In each of the above layers, virtualisation can occur according to the user’s community needs. Indeed, projects

such as LHC, for instance, could request from an NREN and/or GÉANT a dedicated Layer 3 VPN. The French

Grid Research Infrastructure GRID5K has its own physical optical VPN on top of RENATER infrastructure. The

JIVE projects EXPReS and NEXPReS rely on a set of stitched lightpaths that is also called a set or string of

Single Point of Failure.

As described in Chapter 2, there are various initiatives and projects focusing on virtualisation services and

technologies. However, each of these projects is focused on a specific area and their solutions only deal with a

restricted number of layers. Without reinventing the wheel, JRA1 Task 4’s proposal is to integrate existing

Layer 1, Layer 2, Layer 3 and computing virtualisation tools. Based on this aim, this section defines the GÉaNt

virtUalisation Service (GENUS) and an architecture for it. GENUS architecture is a multi-layer, multi-domain

and multi-technology virtualisation architecture suitable for NREN and GÉANT requirements, leveraging tools

and software that have already been developed or are currently under development within GÉANT and the

European research community.

GENUS is based on the following fundamental assumptions:

 GENUS is not a virtualisation mechanism or framework. It leverages virtualisation frameworks,

mechanisms, tools and software already implemented within various EU projects and initiatives as well

as the GÉANT bandwidth-on-demand provisioning tool (AutoBAHN).

 GENUS requires NRENs to adopt an existing virtualisation mechanism. The choice of virtualisation

framework and mechanism is up to each NREN based on their requirements and constraints.

 NRENs and the GÉANT backbone network are the infrastructure providers for GENUS; GENUS itself

has no resources.

As in the drawback analysis, the term “user” refers broadly to any GÉANT and NREN users, the target

audience for the GENUS service, who need their own infrastructure and control over it. An initial view of what

NREN users might use GENUS for was obtained from the requirements survey, documented in [GN3-DJ1.4.1]

Chapter 3.

Note that a consideration of cost and associated aspects such as a cost process and model is outside the

scope of the Task.

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

78

4.2 GENUS Services

The main service that GENUS aims to offer is on-demand provisioning of end-to-end multi-domain multi-layer

virtual infrastructure (network infrastructure + IT infrastructure) over the GÉANT community, leveraging the

capabilities of NRENs’ virtualisation mechanisms as well as GÉANT’s bandwidth-on-demand provisioning tool.

To achieve this objective, GENUS needs to provide an abstraction layer for the virtualisation mechanisms

adopted by the NRENs, hiding from the users the complex technical details and the heterogeneity of the

different frameworks. GENUS will have to provide a set of basic functionalities and tools as described below

and depending on the actors that will interact with it:

 Registration and advertising.

○ NRENs supporting a virtualisation mechanism, either delivering network resources (such as virtual

circuits, virtual routers and switches) or raw computing elements as virtual machines, will be able to

register for the service.

○ Once registered they will be able to advertise their virtualisation framework through a specific

interface, specifying to the service the resources that will be available for leasing to the users.

 End-user interface.

The end users will interact with GENUS using a graphical user interface (GUI). Through this abstraction

they will be able to access the underlying virtualisation platform transparently. In particular, they will be

able to access features such as:

○ Discovery of resources. The users will be able to access a list of the resources that NRENs expose

to GENUS. The system will expose information such as the nature of the resources that can be

included in a slice (network and IT) and their location. In addition, GENUS will provide information

about the capabilities and services of the available virtual resources. This way the user will be able

to filter the resources and select the ones that best fit the needs of the slices.

○ Virtual resources allocation and virtual infrastructure composition. GENUS will accept the

abstracted description of a slice (virtual infrastructure) and will convert it into a complete slice,

interacting with the NRENs’ virtualisation frameworks. The technical details of the whole allocation

process are transparent to the final users. Once the process is complete, GENUS returns the users

an end point (e.g., a URL) from where they will be able to interact with their slices.

○ Operation, control, management and monitoring of the virtual resources and infrastructure. GENUS

will provide a dashboard from where users can monitor the activities of the slices’ elements.

GENUS will also offer a mechanism for accessing the individual resources, so that the users can

control and configure the behaviour of slices’ elementary blocks. (This feature has to be supported

by the NRENs’ virtualisation mechanism. FEDERICA does not support it, but most other

mechanisms do.)

○ Release of resources. Finally, GENUS will provide an interface to let the user release their slices

and advertise the resources as available for creating new virtual infrastructures.

Figure 4.1 below shows a use-case diagram of the GENUS system with the basic functionalities described

above.

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

79

Figure 4.1: GENUS basic functionalities with its main actors

GENUS leverages NRENs’ virtualisation mechanisms and GÉANT’s bandwidth-on-demand (BoD) provisioning

service (GENUS interfaces with the AutoBAHN tool for BoD), enabling the composition and operation of

federated multi-layer virtual infrastructure. The NREN’s virtualisation mechanism is responsible for creating the

virtual infrastructure (infrastructure slice) within each NREN infrastructure, while GENUS performs orchestration

and federation. In other words, GENUS is an orchestration and stitching mechanism, which is able to compose

a federated virtual infrastructure made of two or more slices of NRENs’ infrastructure, created by the NREN’s

virtualisation mechanism and interconnected by GÉANT infrastructure using its GÉANT BoD service. GENUS

is also able to abstract and hide all technological details and interfacing complexity from users and provide a

mechanism where users can communicate with all resources in a uniform and abstract way.

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

80

Figure 4.2: GENUS’s role in providing federated multi-domain, multi-technology virtualisation

4.3 Generic GENUS scenario/use case description

For a better understanding of the expected behaviour of GENUS, this section gives a step-by-step description

of what a user will do to instantiate a virtual infrastructure. For simplicity, the scenario will consider a minimal

set of resources and functionality that will be implemented in the first GENUS prototype. (A more detailed

description of the prototype functionalities and the demonstration testbed infrastructure is provided in Chapters

6 and 7.)

Step Action Description

1 User accesses GENUS. The user logs in to the GENUS GUI.

2 User selects resources. The user accesses the repository of resources registered by the NRENs as
being available for including in virtual infrastructures (slices). The GUI
provides information about the characteristics and capabilities of the
virtualisation platforms.

With this information the user can query the repository for an NREN
providing the desired features: for example, L2 slicing/virtualisation with a
given bandwidth and virtual machines with given computing capabilities
(number of virtual cores, RAM and disk size, number of virtual NICs).

In addition, the user will be able to choose the end point that will be used
to access the virtual infrastructure data plane. In the prototype, geo-
location of the nodes will be used to indicate the location of the resources.

GÉANT

BoD

Service

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

81

Step Action Description

3 User composes virtual
infrastructure (slice)
description.

By choosing the network and computing elements from the pool of
resources obtained in the previous step, the user composes a global
description of the virtual infrastructure (slice). The description includes the
location of the end nodes, the topology and the capabilities of the single
virtual resources.

4 User submits the virtual
infrastructure (slice)
description to GENUS.

Once the user has submitted the slice description, GENUS breaks down
the requirements for individual NRENs and translates them to their
associated provisioning system APIs (i.e. the APIs of the NREN’s
virtualisation system).

GENUS then informs the user about the success of the instantiation
process. If it is successful, GENUS provides a unique ID, or a URL, from
where the user can control and monitor the status of the environment. In
case of failure, GENUS logs the reasons that prevented the creation of the
slice and reports them to the user for further investigation.

5 User controls, manages
and monitors the slice.

Using the dashboard that will be provided in the final version of GENUS,
the user manages, controls and monitors the behaviour of the resources in
a running slice. In the first version of GENUS, monitoring features will be
minimal and will provide a health check on the resources. The control and
management features will be provided to users as URLs for the specific
control systems of the individual virtualisation frameworks in each NREN.

Table 4.1: Steps to instantiate a virtual infrastructure

4.4 State-of-the-art virtual infrastructure federation

One of the main objectives of GENUS is to provide a virtual infrastructure made of infrastructure slices from

multiple NRENs interconnected by GÉANT. To achieve this, GENUS aims to provide a mechanism for

federation and orchestration of infrastructure slices from different NRENs. From the control and management

plane’s point of view, there are two different approaches to federating infrastructures. First, there is the top-

down federation approach adopted by Teagle in the European Panlab testbed [Panlab]. Second, there is the

bottom-up federation approach, represented by Slice-based Federation Architecture (SFA), widely adopted in

the US (GENI) and in Europe (OneLab) [SFAv1, SFAv2, SFAOver]. Each of these is described below. (The

information is based on the NOVI deliverable “D3.1 State-of-the-Art Management Planes” [NOVI-D3.1].)

4.4.1 Teagle

The Pan-European Laboratory for Next Generation Networks and Services, Panlab, and its successor, the

project Panlab Infrastructure Implementation, PII [Panlab], address the need for large-scale testing facilities in

the communications area by implementing an infrastructure for federating testbeds. To facilitate the technical

aspects of testbed federation, Panlab relies on the Teagle framework, a web instance that provides the means

for a Panlab customer to specify his testing needs and get feedback on where, how and when testing can take

place.

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

82

The Teagle Tool can be accessed by Panlab partners and customers via the Teagle Portal, a simple web

interface where the testbed partners can enter the relevant data describing their testbed and its resources, and

Panlab customers may then search the Panlab Repository to find resources suitable for their tests, or they can

specify their testing requirements and get feedback on where, how and when testing can take place. Panlab

users are authenticated on the common web interface of the Teagle Portal. All the information required for

internal authentication and authorisation in Panlab is stored in the Teagle Repository, secured by HTTP

Authentication.

From the Teagle Portal, customers can launch the VCT Tool to create Virtual Customer Testbeds (VCTs). The

VCT Tool is a Java Web Start application that communicates at start-up and during runtime with the Teagle

Repository. The Teagle Repository stores the common information model for high-level agreement across the

tool set and domain-specific data models for separation of concerns. The communication with the repository is

done via the same Java classes as the VCT tool uses for repository queries.

The Teagle Tool also includes an Orchestration Engine (OE) component, which allows users to specify

requests to the federated testing environment. These requests are mapped against existing services exposed

by the testbed. In general, more than one testbed is used in a federated environment, which requires a method

for combining and synchronising various unconnected components. The testbed orchestration system provides

such collaborative processes, starting from definition of the user request to the actual execution of an

orchestration script.

The Panlab Testbed Managers (PTM) are installed at every testbed whose resources are intended to be

offered through the Panlab platform. PTMs implement the interactions at the control layer between the setup

and configuration requests by Teagle and the components in the testbed it manages. It translates generic

Create, Read, Update, Delete (CRUD) commands, received from Teagle as Representational State Transfer

(REST) messages, into resource-specific communications (e.g. SNMP), that is, control commands applicable to

the testbed component.

A PTM consists of two parts: the Core PTM and the Resource Adaptation Layer (RAL). The role of the RAL is

to integrate the resources offered by testbed owners to the PII platform. The resources are controlled by

resource-specific Resource Adapters (RAs). They provide a common interface for communication with PTM

modules while implementing resource-specific communication and configuration protocols when dealing with

resources. They act like device drivers for the different testbed resources. The RA common interface

communication schema follows a generic XML schema catering for the description of all the possible

configuration parameters a resource may be publishing.

Teagle’s architecture provides a hierarchical federation model that is shown in Figure 4.3 below.

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

83

Creation

Environment

(VCTTool)

Repo

(REST interface)

Request

Processor

(RP)

Orchestration

Engine

(OE)

store testbed (V
C

T
) configuration

Domain

Manager

(PTM)

Policy

Engine

(PE)

TEAGLE

User

Domain

Manager

(PTM)

po
lic

y
ev

al
ua

tio
n

in
d

ic
a

te
 b

o
o

k
in

g
 re

q
u

e
s
t

policy evaluation retrieve VCT info

b
o

o
k
 V

C
T

individual provisioning requests

TGW dispatches requests to respective PTMs

T1 interface (CRUD) T1 interface (CRUD) T1 interface (CRUD)

Resource(s)

Resource specific

protocol

Domain A

Resource

Adapter (RA)

Resource(s)

Resource specific

protocol

Domain B

Resource

Adapter (RA)

Domain

Manager

(PTM)

Resource(s)

Resource specific

protocol

Domain C

Resource

Adapter (RA)

TEAGLE

Gateway

(TGW)

Figure 4.3: Teagle overview

4.4.2 Slice-based Federation Architecture (SFA)

The Slice-based Federation Architecture (SFA), as described by the SFA Draft 1.0 [SFA1], then by the SFA

Draft 2.0 [SFA2], and implemented by PlanetLab [PlanetLab, SFAimpl] is an API specification and a software

system that allows different testbeds to federate, i.e. a user registered on testbed X can access resources in

testbed Y and Z too in a transparent way. The description of SFA provided in this section borrows largely from

the SFA Draft, but also includes the pragmatics developed via the PlanetLab implementation of the SFA system

and its daily use.

SFA defines the minimal set of interfaces and data types that enable a federation of slice-based network

components to interoperate. SFA defines two key abstractions: components and slices.

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

84

 Components are the primary building block of the architecture. A component might correspond to an

edge computer, a customisable router, or a programmable access point. A component is comprised of a

collection of resources, including physical resources (e.g., CPU, memory, disk, bandwidth) logical

resources (e.g., file descriptors, port numbers), and synthetic resources (e.g., packet-forwarding fast

paths). These resources can be contained in a single physical device or distributed across a set of

devices, depending on the nature of the component. Each component is controlled via a component

manager (CM), which exports a well-defined, remotely accessible interface. (Components can be

grouped into aggregates, with each aggregate controlled by an aggregate manager (AM) that plays the

same role as a component manager). The component/aggregate manager defines the operations

available to user-level services to manage the allocation of component resources to different users and

their experiments.

 A slice is defined by a set of resources spanning a set of network components, plus an associated set

of users that are allowed to access those resources for the purpose of running an experiment on the

substrate. The slice manager (SM) is a proxy between user and aggregate managers (AMs), which

represent a collection of components as a single aggregate for slice operations, and decides which AM

to contact. The registry (R) maintains information about a hierarchy of management authorities and

maintains information about a hierarchy of slice authorities.

Figure 4.4: PlanetLab SFA architecture

SFA gives users access to heterogeneous resource types. The resource specification (RSpec) is the means

that SFA uses for declaring those resources. RSpecs provide a language for describing the resources (both

physical and logical) exported by an aggregate (collection of resources). So far, SFA has taken a bottom-up

approach to defining the RSpec, allowing each new type of aggregate to specify its own RSpec format using

XML. The RSpec serves two purposes: to let the aggregate advertise information to the user about the

available resources, and to enable the user to request a subset of the resources to be allocated to a slice. The

aggregate manager is responsible for generating and processing RSpecs. Implementing a new RSpec requires

changes in the aggregate manager.

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

85

By formalising the interface around the slice, resource owners and users are free to cooperate more easily.

Owners simplify the administrative overhead of making their systems easily accessible to more users, and

users gain access to interesting systems without the overhead of setup and administration.

4.5 GENUS architectural building blocks

GENUS’s architecture matches the Teagle approach better than the SFA approach, because the context is of

testbeds that already exist and the objective is to set up a layer on top of them in order to federate them. The

GENUS federation concept is closer to a hierarchical federation than a peer-to-peer federation. The

architecture that is proposed in this section is therefore more inspired by Teagle’s architecture than by SFA.

However, the adoption of the Teagle model would not preclude the possibility of adopting some benefits

provided by the SFA approach. As already mentioned, the main service that GENUS aims to offer is on-

demand provisioning of end-to-end multi-domain multi-layer virtual infrastructure (network infrastructure + IT

infrastructure) over the GÉANT community, leveraging the capabilities of NREN’s virtualisation mechanisms as

well as GÉANT’s bandwidth-on-demand provisioning tool.

The proposed GENUS architecture is depicted in Figure 4.5 below.

Figure 4.5: GENUS architecture

The blocks that make up the GENUS architecture are as follows:

 Unified User Interface: a web service for users where they can communicate with the GENUS system.

Using this interface, the users can obtain a list of participating NRENs and their available resources and

capabilities. They can also submit their request for the allocation of the resources they specify.

 NREN Adaptor: an interface, adaptor and translator to the NREN virtualisation mechanism. It connects

the GENUS system to the NRENs’ virtualisation systems via a set of APIs available from the NRENs’

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

86

virtualisation mechanisms (i.e. it translates users’ requirements into a format compatible with the APIs

of the NREN-specific virtualisation mechanism).

 GÉANT Adaptor: translates users’ requirements into a format understandable by AutoBAHN. In the

GENUS system, AutoBAHN is used for provisioning inter- and intra-virtual infrastructure connectivity.

 Resource Registry: a mechanism that provides the capability for NRENs to register and modify their

infrastructure and virtualisation mechanisms in the GENUS system for user access.

 Virtual Infrastructure Composition (Brokering, Orchestration, Reservation): a set of functionalities

that breaks down the user’s request, sends the appropriate request(s) to one or multiple NRENs,

reserves resources and creates the requested virtual infrastructure.

 Virtual Infrastructure Operation: a set of functionalities that allows a user/owner of a virtual

infrastructure to control, monitor, configure and manage virtual resources. This is also called the

Virtualised Operations Support Service (VOSS), and is explained in more detail in Chapter 5.

 Enterprise Service Bus (ESB). GENUS will adopt an architecture based on the Service-Oriented

Architecture (SOA) model. In particular, it will exploit the functionalities provided by an Enterprise

Service Bus middleware. Under this assumption, the distinction between a centralised and a distributed

implementation becomes blurred: the GENUS functionalities are modules of the ESB [Fuse] and their

deployment pattern affects the nature of the whole service. If the components are hosted by a single

container (i.e. the element of the ESB that runs the architecture modules), then GENUS will behave like

a centralised system, interacting with the clients through a unique end point (the GUI). By contrast, if

more ESB instances are used for the deployment then different interaction patterns will let GENUS

appear as a cloud.

Having a distributed layout of the ESB platforms does not affect the behaviour of the GENUS

components. It introduces additional features for the resiliency and scalability of the service. In

particular, high availability and load balancing can be configured so that the system can scale

horizontally to manage the workload dynamically.

It is relevant to observe that the presence of an ESB makes the deployment choice, i.e. distributed

versus centralised, transparent for the clients. In the case of distributed layout, the only additional

information of which the GUI is aware is that GENUS can be accessed from different end points.

The distribution of the layout can be done at different levels: introducing high availability with static

failover for the single components of the system, or creating a cluster of different ESBs sharing the

containers and the message brokers. In the former configuration, replicas of the functional components

of the systems are instantiated in the same container. Every instance has different end points and the

client configuration file reports their existence. The client side remains unaltered; only the configuration

of how the service is contacted differs. The replicas ensure that if a module of the system becomes

unresponsive, the functionality is still available through cloned modules. ESBs like Fuse and GÉANT

Multi-domain Bus (GEMBus) [GEMBus] offer different policies for accessing the replicas: round robin

and random selection of the entry point. Random selection, in addition to high availability, provides a

simple strategy for balancing the load among the instances of a module. Distribution can be done also

by clustering together ESB servers.

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

87

The benefit of having clustered containers is greater than static failover for the single components: in

addition to transparent load balancing and high availability (containers are aware of their peers for

failover), rollback and redelivery of failed message exchanges is provided. Different communication

patterns among the message brokers can be arranged to implement different distribution patterns: one-

way forwarding for master-slave configurations or bi-directional connections for creating peer-to-peer

islands. Figure 4.5 shows how different ESBs could be configured to deploy GENUS in a distributed

fashion.

Figure 4.6: Distributed GENUS layout using ESBs

If a component fails then the message broker of the master ESB transparently reroutes the requests to

the corresponding replicated component hosted on the slave server. If the component connecting the

ESB to the clients crashes, the static failover configuration deployed on the client ensures that users will

continue to interact with GENUS by connecting to the interface of the slave ESB.

 GEMBus Interface. GENUS also deploys an interface to GÉANT Multi-domain Bus (GEMBus). It

allows some additional functionalities and GÉANT services that already interface with GEMBus to be

integrated with GENUS. Examples of these services are:

○ The GEMBus Accounting Service that will allow users to track their GENUS transactions.

○ The GEMBus Security Token Service (STS) that will provide secure GENUS transactions.

○ Access to AutoBAHN through GEMBus (in addition to direct interfacing via the AutoBAHN adaptor),

since AutoBAHN is integrated with GEMBus.

It must be noted the building blocks mentioned above are the basic mechanisms that are required for the first

version of GENUS. An operational GENUS service will require other services such as accounting, security, etc.

The functional building blocks shown in the GENUS architecture (Figure 4.5) are not restrictive with respect to

the actual deployment of the GENUS components. According to the architectural models adopted by similar

pre-existing middleware, some blocks can be located either on the client side (i.e., on the machine of the user

requesting a virtual resource) or in a centralised service (leaving the client’s layer as thin as possible). Other

GÉANT Virtualisation Service (GENUS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

88

blocks, like the resource registry, collecting the resources exposed by the NRENs, have to remain functionally

separated entities, because they store and manipulate shared information.

The actual GENUS architecture could be in any intermediate position between the opposite ends of the

centralised/distributed spectrum. By following a lean software development philosophy, the final choice should

be left to the further investigation of possible deployment use cases and applications, as well as trial results.

4.6 References

[Fuse] Fuse ESB

http://fusesource.com/products/enterprise-servicemix/

[GEMBus] Diego R. Lopez, “The GEMBus Way: Delivering the Promise of the Internet of Services”

http://www.terena.org/activities/eurocamp/nov09/slides/20091118-GEMBus-EuroCAMP-

Budapest.ppt

[NOVI-D3.1] NOVI deliverable “D3.1 State-of-the-Art Management Planes”

http://www.fp7-novi.eu/index.php/deliverables/doc_download/24-d31

[Panlab] http://www.panlab.net

[PlanetLab] http://www.planet-lab.org

[SFAImpl] PlanetLab Implementation of the SFA

https://svn.planet-lab.org/browser/sfa/trunk/docs/sfa-impl-2009-04-07.pdf

[SFAOver] SFA Overview

http://svn.planet-lab.org/wiki/SFAGuide#SFAOverview

[SFAv1] “Slice-Based Facility Architecture”, Draft Version 1.04, April 7, 2009

https://svn.planet-lab.org/browser/sfa/trunk/docs/sfa.pdf

[SFAv2] “Slice-Based Federation Architecture”, Version 2.0, July 2010

http://groups.geni.net/geni/wiki/SliceFedArch

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

89

5 Virtualised Operations Support Service
(VOSS)

5.1 Introduction

As described in Chapter 4, GENUS will create a federated multi-layer virtualised environment. The virtualised

network service provided by the federated domain will be based on technologies that have been developed

elsewhere, such as by European projects including GN3’s AutoBAHN, MANTYCHORE, NOVI, Panlab and

OFELIA, and by NRENs, including HEAnet (Bluenet) and SURFnet (OpenDRAC). This chapter describes

GENUS’ approach to virtualising the operational management functions of a resource through the Virtualised

Operations Support Service (VOSS), a set of functionalities within GENUS that allows a user/owner of a virtual

infrastructure to control, monitor, configure and manage virtual resources.

Most present-day technologies look at virtualising the service that is provided (such as a data plane being an IP

network, an Ethernet connection, etc.). In VOSS, the Resource that is actually being used is called Worker

Resource. Such a Resource can also be seen in other services based on IT services, for instance, storage or

computer cycles.

Besides the Worker Resource, VOSS also defines the Management Resource, following the analogy of the

management plane in telecommunications. The Management Resource virtualises the operational

management functions of the Worker Resource. Utilising GN3’s Network Management Architecture (NMA),

which is based on TeleManagement Forum’s (TM Forum’s) Enhanced Telecom Operations Map (eTOM), the

following Management Resources can be recognised:

 Configuration and Activation Resource (installing, configuring and optimising Worker Resource).

 Quality Management Resource (managing, tracking, monitoring and reporting on the performance of a

Worker Resource).

 Trouble Management Resource (recognising, isolating and correcting faults).

 Policy Management Resource (allowing the addition, modification or deletion of policy rules and

attributes with regard to the business logic).

 Information Management Resource (e.g. storing information related to Worker Resources).

VOSS combines the ecosystem of the Resource, Ownership, Role and Actors (RORA) model from GEYSERS

(an EU FP7 project addressing infrastructure virtualisation for cloud services, described in Section 2.9) and a

Virtualised Operations Support Service (VOSS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

90

marketplace with the operational management of resources from MANTYCHORE (an EU FP7 project

addressing IP infrastructure virtualisation, described in Section 2.3). The advantage of seeing Management

Resources in the same way as Worker Resources is that it opens up the possibility to sell/subcontract, that is,

trade, any (Worker and Management) Resources in the marketplace using normalised interactions between

actors. VOSS aims to provide the required operational and support services for the GENUS system to pave the

way to making GENUS an operational virtualisation provisioning service for NRENs.

As mentioned above, VOSS is based on the definition of Management Resources and Worker Resources. The

relationship between both is many to one, but the proposed design allows for independent resource

manipulation. Virtualisation processes that rely on Worker Resource aggregation are not very common. Many

vendors offer solutions to manage networks (if Web Services-based: Worker Resources) using proprietary,

centralised management systems (normally not Web Services-based Management Resource). These

management functions are monolithically implemented in the management system. In the VOSS model, the

function sets can be split and a Management Resource defined for each. This way, operators’ management

workflows are more flexible and allow them to incorporate or delegate actions to third parties, under certain

conditions.

The Operational Management functions are related to the Operations Support Systems (OSS) mentioned in

GN3’s NMA (for more information, please refer to GN3 deliverable “DJ2.1.1: Information Schemas and

Workflows for Multi-Domain Control and Management Functions” [GN3-DJ2.1.1]). The OSS can be based on

TM Forum’s Next Generation Operations Support System (NGOSS) Distributed Interface Oriented Architecture

(DIOA). This architecture allows a resource-oriented style, which is aligned with the NaaS environment. Like

the NaaS environment, the NMA uses a Service-Oriented Architecture (SOA), thus enabling a Web Service

(WS) environment.

Furthermore the multi-administrative domain aspect (which is not part of eTOM) is included in GENUS/VOSS’s

vision.

It is important to mention that for virtualisation, and the possible marketplace that will evolve around it, multi-

domain is more related to the physical domains: a user acquires and then owns the right to specific Resource

parameters (under some “lease” restrictions), so this is slightly different to owning the Resource (this is

comparable to renting a house). A user gathering such Resources becomes a single administrative domain

(even though the virtual/physical Resources are provided by others). This layering and the possibility to re-

market an (enhanced) Resource is important in a virtualised world. This recursive granting of rights is one of

the key enablers of NaaS flexibility.

This chapter looks at the parts of eTOM Level 2 shown in Figure 5.1 below.

Virtualised Operations Support Service (VOSS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

91

Figure 5.1: eTOM Level 2 functionalities considered by VOSS

The Operations, Support and Readiness functionality ensures that the operational environment for the

Fulfilment, Assurance, and Billing and Revenue Management (FAB) functionality is in place.

Operational management has a direct relation to the business model and thus possibilities regarding the

business model and a choice are presented. Some of the business aspect definitions used in virtualised

environments have been adopted from GEYSERS deliverable D1.1 “Identification, Description and Evaluation

of the Use Case Portfolio and Potential Business Models” [GEYSERS-D1.1]; other definitions are unique to

GENUS. The GEYSERS RORA model ([GEYSERS-D1.1], Section 2.2) is used to discuss the entities involved

in the usage and operational management of resources.

The plan is for JRA1 Task 4 to integrate the GN3 NMA and the GEYSERS RORA model as part of the GENUS

documentation, as the RORA model proposed is not only applicable to the management of resources.

5.2 RORA model

GEYSERS ([GEYSERS-D1.1], Section 2.2) defines “a novel business model that allows us to describe the

different elements and their relationships, the so-called RORA Model, which takes its name from the four

components it is based on: Resources, Ownership, Roles, and Actors. We base the RORA model on business

scenarios where the vertical disintegration has led to [the sharing of] a resource substrate among the different

involved entities; although each one of them holds a different set of allowed actions over it. These rights and

Virtualised Operations Support Service (VOSS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

92

responsibilities are defined by an agreement with another entity; and by establishing this new agreement we

say that the entity obtains a specific ownership over the resource.”

5.2.1 Applicability of the RORA model in the NREN environment

The GEYSERS RORA model and its parts come from a different, more business-oriented environment than the

NREN community. However, with regard to the operational management aspects, the NREN environment is not

that different from the GEYSERS environment. The additions to the GENUS version of the model proposed

below incorporate ideas utilised in NRENs (such as HEAnet).

5.2.2 Resources

A service consists of several aspects relating to Net(work) or IT resources:

 Worker Resource (WoR): the part actually used by the consumer; such as connectivity, computation,

storage functions.

 Management Resource (MaR): the part that relates to the operational management of a WoR.

A Resource can also be a machine or a human (Human Resource (HR)).

The Human Resource is very flexible and can do a lot of things, including manual activities. Amazon ’s

Mechanical Turk [MTurk] is an example how to use HRs in a Web Services environment. Like a machine

resource, an HR can be utilised as a WoR or a MaR.

In general, Resources can be composed together (aggregated) or they can be partitioned, as shown in Figure

5.2.

Figure 5.2: Resource aggregation and partitioning

R R

R R

R

Composition

Virtualised Operations Support Service (VOSS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

93

5.2.2.1 Worker Resources

GEYSERS

In GEYSERS, a resource can have several types, depending on the virtualisation degree ([GEYSERS-D1.1] pp.

14–15, updated in [GEYSERS-D3.1] pp. 24–25):

 Physical Resource (PR): a real physical box (no virtualisation).

 Logical Resource (LR): a data model created from the PR, that is, an abstract representation of the PR

(resource attributes are virtualised).

 Virtual Resource (VR): a logical construct behaving like a PR. It can be a simple abstraction, a partition

of a PR or an aggregation of several PRs, but presented as a standalone resource (resource attributes

are virtualised and manipulated, and new configuration/management interfaces are created).

 Virtual Infrastructure (VI): a composition of multiple VRs together.

GENUS

Like GEYSERS, GENUS has one overall Resource (seen as the object). A Resource can be subdivided into

several types:

 Physical Resource (PR): a real physical box.

 Virtual Resource (VR): a partition of a physical box (PR), but presented as a standalone resource.

 Virtual Infrastructure (VI): a composition of multiple VRs together.

In this document, these Worker Resource types are seen as equivalent. A VI is a composition of many VRs. A

VR will be built on a PR (or a VR). The HR is a very special PR. In essence, however, they are all a Worker

Resource, and share the properties of a Worker Resource. (Such differences as there are relate to Service

Level Specification (SLS), complexity, the extent to which the Resource is related to a physical box, time to

realise, etc.)

From the operational management point of view, there is no real difference between these types of Worker

Resource (except perhaps a different level of need for HRs to support such management). In the rest of the

document, therefore, the term Worker Resource is used to mean any of the abovementioned Worker Resource

types.

5.2.2.2 GENUS Management-Resource

In addition to seeing a link, an interface, a router, a network or a disc as a Worker Resource, the related

operational management functions of such a resource are also virtualised in GENUS in the Management

Resource (MaR).

There are many MaRs and they can be composed (aggregated) or partitioned just like Worker Resources.

Selected MaRs are mentioned as examples.

Virtualised Operations Support Service (VOSS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

94

The Service Stratum management blocks described in the GN3 document “Definition of a Multi-Domain Control

and Management Architecture” ([GN3-MJ2.1.1] Section 5.1) are convenient examples of Management

Resources:

 Service Configuration and Activation (CoMaR): addresses installing new WoRs, configuring WoRs,

collecting configuration data, optimising WoRs.

 Service Quality Management (QuMaR): addresses managing, tracking, monitoring and reporting on the

performance of a specific WoR.

 Service Trouble Management (TrMaR): addresses recognising, isolating and correcting faults.

 Service Policy Management (PoMaR): addresses permissions to add, modify or delete policy rules and

attributes with regard to the business logic.

 Service Information Management (InMaR): addresses maintaining WoR-specific data according to the

Service Information model.

All these MaRs are essential for any individual and/or composed WoR and the MaRs are very tightly coupled

with the WoR. One can see a set of MaRs as a kind of Customer Management Interface (CMI), but based on

Web Services, and thus as any other Resource.

Figure 5.3: Relationship between WoR and MaR

Defining Service Stratum blocks as Web Service MaRs makes them easy to exchange and trade as if they

were “normal” WoRs, thus providing a simpler service to the consumer who only wants to use a WoR (and

perhaps not manage it). By virtualising and splitting the Service Stratum into different MaRs, a consumer has

more control over to whom he/she can allocate a certain aspect of the management of a WoR (delegated

responsibility).

The MaRs relate to the ability to perform the operational management function. The management tools

themselves are provided by a role that provides the WoR and its related MaRs.

The MaRs can be implemented by HRs (certainly convenient if, for instance, physical installation is needed).

Virtualised Operations Support Service (VOSS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

95

5.3 Ownership

GENUS follows GEYSERS in recognising five types of ownership ([GEYSERS-D1.1] p. 15):

1. Legal: the entity that purchased the PR and has legal responsibility for the actions performed with it.

2. Economic: the entity setting the policy.

3. Administrative: the entity that enforces the policy and performs certain management functions.

4. Operational: the entity that performs certain management functions and liaises with the service

consumer.

5. Usage: the entity that uses the WoR or (sub)leases it to another service consumer.

Like GEYSERS, GENUS considers the legal and economic owners as the same entity, referred to as the

economic owner.

The MaRs are related to the Administrative Owner (Tr-, In-, Qu-, Po-MaR) and Operational Owner (Co-MaR).

Figure 5.4: GENUS resource ownership model

5.4 Roles

This section presents the role structure used in GEYSERS and 4WARD, and defines the GENUS role structure.

Virtualised Operations Support Service (VOSS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

96

5.4.1 GEYSERS

GEYSERS defines the following roles ([GEYSERS-D1.1] pp. 16–18):

 Physical Infrastructure Provider (PIP): has economic ownership of the equipment, and can lease PRs or

VRs.

 Virtual infrastructure Provider (VIP): “Its main goal is to compose VRs belonging to [the same or]

different PIPs in order to create VIs and offer them as a service towards the operator role.” [GEYSERS-

D1.1] (Administrative right). It is therefore a layer between the PIP and the VIO.

 Virtual Infrastructure Operator (VIO): controls the Resource in the operational phase (Operational right)

and provides a service to the Service Consumer, built from the Resources leased by the PIP.

 Service Consumer (SC): the beneficiary of the services offered by the VIO; holds usage ownership only.

5.4.2 4WARD

4WARD uses a slightly different role structure, which was used in the MANTICORE II project and is due to be

revised in the MANTYCHORE project:

 Infrastructure Provider (InP): maintains the PRs and enables the VRs.

 Virtual Network Provider (VNP): the provider that constructs from the Resources to create a Virtual

Network (VNet) (or, in GEYSERS terminology, a VI).

 Virtual Network Operator (VNO): operates, controls and manages the VNet.

5.4.3 GENUS

The following roles are at present foreseen in the GENUS architecture:

 Service Consumer (SC) (close to GEYSERS’ SC): the entity that uses the WoR and has the

responsibility for allocating the related MaRs to Resource Operators.

 Resource Provider (RP) (close to 4WARD’s InP and VNP and to GEYSERS’ PIP): an entity that

provides WoRs.

 Resource Operator (RO) (close to 4WARD’s VNO and to GEYSERS’ VIO): an entity that operationally

manages part(s)/whole Resource through the MaRs.

Virtualised Operations Support Service (VOSS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

97

Figure 5.5: GENUS roles and actors

The GENUS roles have the advantage of being more generic and atomic than the GEYSERS roles and thus

the options for combining roles (in actors – see Section 5.5 below) are more flexible and transparent.

As the principle of virtualisation allows sub-renting to another entity (depending of course on the policies set by

the Economic Owner), a Service Consumer Stack (SCS), an integral property of a Resource, is being defined,

which holds the SC and its related RPs and ROs. When a Resource is sub-rented to another SC, the new SC

(and the operational management entities decided by the SC) will be pushed on the SCS.

5.5 Actors

An actor in GENUS is one or a combination of Roles, as in the GEYSERS RORA model. See Figure 5.5 above

for an example of one role being performed by one Actor (Actor2 and Actor3) and an Actor having three roles

(Actor1).

5.6 VOSS Pros and Cons

An operational GENUS mechanism to be deployed by NRENs requires the design and implementation of a

comprehensive VOSS. This chapter has briefly discussed the considerations and required functionalities for

such a VOSS. However, it must be noted that in addition to its many advantages, a VOSS also brings some

disadvantages. Based on the discussion in this chapter, the pros and cons of a VOSS may be summarised as

follows:

Virtualised Operations Support Service (VOSS)

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

98

Pros

 Introduces a structured way to outsource operational management functions.

 Brings the operational management function into the Web Service domain.

 Re-uses a business model used for WoRs for MaRs, i.e. uses a unified model for both Resource types.

 As a result of the unified model, it is possible to use a similar concept like the marketplace.

 Introduces a standard protocol for accessing MaRs.

 The networking environment is moving towards a multi-tenant environment and standardising the

API/interfaces for that environment is essential. VOSS contributes towards that standardisation.

 Results in the provision of a common management framework.

Cons

 Any unification layer normally adds complexity to the system.

 A multi-tenant environment poses extra risks to a system (see Chapter 3 Drawback Analysis of

Virtualisation).

 Due to the present low level of availability of unified operational management services; VOSS is not

easy to implement in the short term.

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

99

6 GENUS Prototype Design and Proof-of-
Concept Implementation

6.1 Introduction

This chapter describes GENUS’ software design, its implementation methodology and the current status of the

GENUS prototype. Taking into account the architectural design of the GENUS system, a minimum set of

functionality for GENUS proof-of-concept implementation has been identified, which is also described in this

chapter.

6.2 Information modelling framework

To enable the different GENUS software components to interact using a common vocabulary, an information

model needs to be in place. As such, the information model will be mostly an internal model for GENUS. JRA1

Task 4 has adopted the GEYSERS Information Modelling Framework (IMF), as described in GEYSERS

deliverable D3.2. “Preliminary LICL software release” [GEYSERS-D3.2], from which much of the material in this

section has been taken.

Figure 6.1 below shows the main hierarchy of the GEYSERS IMF as adopted by GENUS. All predicates or

relations between the concepts are “is-a” relations. The top concept is a Resource, which can be a Device, a

DeviceComponent or a NetworkElement. This enables devices, their components and the network elements

that connect these devices to be described. Different types of device components exist, each with different

properties. Memory, processing and storage components can be used to define IT resources. The operating

system can be used to describe the platform of an IT resource. Switching components can be used to describe

switches or routers. Specific types of optical switching components are also included, to describe their specific

properties, which are needed for the virtualisation process of these optical components.

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

100

Figure 6.1: Main hierarchy of the IMF model

The network elements are defined in accordance with the current version of the Unified Modelling Language

(UML) specifications. An interface enables the port via which a device is connected to another device to be

described. Figure 6.2 below shows three different ways to connect two devices. (To distinguish between

concepts in the IMF ontology, rectangular shapes are used to depict the instances of a concept.)

The first way of defining a connection is by creating a connectedTo predicate between two devices. This is the

most abstract way of describing connections. The second way is by adding inbound and outbound interfaces to

the devices and then connecting the interfaces of the two devices, which provides a more detailed description.

The third and most detailed way of creating network connections is to connect interfaces using a link concept.

The link concept contains properties such as the bandwidth of the link and the type of fibre (in the case of an

optical link).

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

101

Figure 6.2: Different types of network connections

Figure 6.3 below shows the different properties of the Device concept. This concept can be used to describe

physical and virtual devices as well as IT and network devices. Each device may consist of a number of

components. If the device is a physical resource, it may consist of one or more processing components,

memory and storage components. If the device is a virtual resource, the device description may only contain

the component that characterises the device. As mentioned above, a device may have a number of inbound

and outbound interfaces to connect it to other devices. Furthermore, a device can have a number of energy-

and QoS-related properties. These properties are described in more detail in the following sections. A device

can have an IPv4 address and/or an IPv6 address and/or a Universal Resource Indicator (URI). In the case of a

physical device, the location of a device should correspond to the physical location of the device. In the case of

a virtual device, the location may only indicate a city or country.

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

102

Figure 6.3: IMF Device properties

To define virtual infrastructures and virtual infrastructure requests, the Virtual Infrastructure concept is used.

Figure 6.4 below shows all the properties of this concept. A virtual infrastructure consists of a number of

resources, which can be devices, device concepts or network elements. To allow a virtual infrastructure to be

defined in terms of device components, it is also possible to describe or request a virtual infrastructure with a

certain storage or computing capacity without having to specify individual devices. Furthermore, a virtual

infrastructure has a location to allow requests to be restricted to certain geographical areas. The virtual

infrastructure may also have a number of energy- and QoS-related properties.

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

103

Figure 6.4: IMF Virtual Infrastructure properties

6.3 Implementation of virtual Infrastructure composition and

operation

As mentioned above, taking into account the architectural design of the GENUS system, JRA1 Task 4 has

identified a minimum set of functionality for GENUS prototype implementation. The following list describes the

subset to be provided by the GENUS proof-of-concept implementation:

 Facility registration.

 Resource discovery.

 Requesting a virtual infrastructure.

 Decommissioning a virtual infrastructure.

 Booking resources.

 Releasing resources.

Figure 6.5, Figure 6.6 and Figure 6.7 present graphical representations of each function and the actors involved.

An overview of the status of the GENUS prototype based on the status of the functions and features is provided

in Section 6.6.

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

104

Figure 6.5: Registration of a new facility and resource discovery in the GENUS system

Figure 6.6: Requesting a new service (a new virtual infrastructure) from the GENUS system

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

105

Figure 6.7: Decommissioning a service (a virtual infrastructure) in the GENUS system

The following sections describe each function in more detail, identifying the actors involved, the information

exchanged and the implementation status.

6.3.1 Facility registration

In order to join the GENUS federation each facility is obliged to register itself in the GENUS registry. The

registration procedure should cover exchange of basic information (e.g. site name, site administrator, site

management platform, etc.). The advanced registration procedure should also cover methods for authentication

and authorisation of users and accounting, which, although not being included in the proof of concept

implementation, are acknowledged to be of high importance to the production service.

Actors involved:

 A new facility joining the federation.

 GENUS.

The following table summarises the information exchanged between the GENUS system and a new site during

the facility registration phase.

Information Provided by

Comments

Implementation
considerations

Structure

New site name New facility Proof-of-concept
implementation

Simple object – string

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

106

Information Provided by

Comments

Implementation
considerations

Structure

Site administrator New facility Proof-of-concept
implementation

Composite object:

 Admin name

 Admin email address

Site management
platform

New facility Proof-of-concept
implementation

Composite object:

 Platform name

 Access method (Web Services,
Corba, other)

 Access URL

AAA information New facility Advanced feature
(not considered in
the proof-of-concept
implementation)

Composite object:

 Authentication & Authorisation method

 AA system URL

Accounting New facility Advanced feature
(not considered in
the proof-of-concept
implementation)

Composite object:

 Access URL

Registration
confirmation

GENUS Proof-of-concept
implementation

Composite object:

 GENUS site Id

Table 6.1: Information exchange during facility registration

Implementation of this feature has been finalised and it is ready for GENUS integration.

6.3.2 Resource discovery

Each facility has to inform the GENUS system about the resources available for use in a federation. This can

be realised through either a pooling or a notification mechanism. In both cases the facility participating in a

federation provides information about its resources. The only difference is who triggers the procedure: the

GENUS system or the facility itself. This decision will be taken by the implementation team during the design

phase of the GENUS system.

Actors involved:

 A new facility joining the federation.

 GENUS.

The following table summarises the information exchanged between the GENUS system and a new site during

the resource discovery phase.

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

107

Information Provided by

Comments

Implementation
considerations

Structure

Resource discovery
request

GENUS Proof-of-concept
implementation

An empty request

Resources list New facility Proof-of-concept
implementation

Composite object:

 List of resources available in the
testbed

Resource discovery
confirmation

GENUS Proof-of-concept
implementation

An empty request

Table 6.2: Information exchange during resource discovery

This feature will not be available for the first release of the GENUS prototype.

6.3.3 Requesting a virtual infrastructure from the GENUS system

The end user may request a virtual infrastructure from the GENUS system. The request will be further

processed by internal components and decomposed into a set of requests passed to each facility participating

in a service (more information is provided in Section 6.3.5 Booking resources in local facilities). The current

implementation of the GENUS system allows the end user to request a virtual infrastructure using two methods:

 By describing the virtual infrastructure based on the GEYSERS IMF mentioned above and in

accordance with UML specifications.

 By browsing through the available facilities and registered resources within the GENUS system and

selecting the required services/resources.

Actors involved:

 A user requesting a virtual infrastructure.

 GENUS.

The following table summarises the information exchanged between the user requesting a service (virtual

infrastructure) and the GENUS system.

Information Provided by

Comments

Implementation
considerations

Structure

User information User Proof-of-concept
implementation

Composite object:

 User name

 User email address

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

108

Information Provided by

Comments

Implementation
considerations

Structure

AA information User Advanced feature
(not considered in
the proof-of-concept
implementation)

Composite object:

 Authentication & Authorisation method

 AA system URL

Service (virtual
infrastructure)
specification

User Proof-of-concept
implementation

Composite object:

 Specific details of the service (dates,
end points, list of virtual/physical
resources, etc.)

Service (virtual
infrastructure)
status

GENUS Proof-of-concept
implementation

Composite object:

 Service Id

 Service status

Table 6.3: Information exchange during service request (virtual infrastructure)

Implementation of this feature has been finalised and it is ready for GENUS integration.

6.3.4 Decommissioning a virtual infrastructure in the GENUS system

It is expected that the user will specify the start and end date of the service (virtual infrastructure) in the request

message. However, it is possible that the user may want to terminate the service (virtual infrastructure) before it

decommissions automatically.

Actors involved:

 A user requesting a service (virtual infrastructure) termination.

 GENUS.

The following table summarises the information exchanged between the user requesting a service (virtual

infrastructure) termination and the GENUS system.

Information Provided by

Comments

Implementation
considerations

Structure

AA information User Advanced feature
(not considered in
the proof-of-concept
implementation)

Composite object:

 Authentication & Authorisation method

 AA system URL

Service (virtual User Proof-of-concept Simple object – Service Id

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

109

Information Provided by

Comments

Implementation
considerations

Structure

infrastructure) Id implementation

Service (virtual
infrastructure)
status

GENUS Proof-of-concept
implementation

Composite object:

 Service Id

 Service status

Table 6.4: Information exchange during service termination (virtual infrastructure)

Implementation of this feature has been finalised and it is ready for GENUS integration.

6.3.5 Booking resources in local facilities

The GENUS system is responsible for running advanced algorithms to find the optimal allocation of resources

in participating domains in the federation.

The complex request for a service (virtual infrastructure) is decomposed into a set of requests for allocation of

resources in independent management systems running on top of each domain.

Actors involved:

 GENUS.

 A facility participating in a service (virtual infrastructure).

The following table summarises the information exchanged between the GENUS system and a facility

participating in a service to optimise resources.

Information Provided by

Comments

Implementation
considerations

Structure

Service (virtual
infrastructure)
information

GENUS Proof-of-concept
implementation

Composite object:

 Service Id

 Service description

 Start/end date

Reservation
information

GENUS Proof-of-concept
implementation

Composite object:

 Resource list

 Start/end date

Reservation status Facility Proof-of-concept
implementation

Composite object:

 Reservation Id

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

110

Information Provided by

Comments

Implementation
considerations

Structure

 Reservation status

 Is GENUS responsible for releasing
resources or it will be done
automatically?

Table 6.5: Information exchange during service participation – resource optimisation

Implementation of this feature has been finalised and it is ready for GENUS integration.

6.3.6 Releasing resources

If the service (virtual infrastructure) is terminated manually by a user or if the facility explicitly requested a

release date during the reservation phase, the GENUS system is responsible for triggering a set of requests to

particular facilities participating in a service for releasing resources. For more information, please refer to

Section 6.3.5 Booking resources in local facilities above.

Actors involved:

 GENUS.

 A facility participating in a service (virtual infrastructure).

The following table summarises the information exchanged between the GENUS system and a facility

participating in a service to release resources.

Information Provided by

Comments

Implementation
considerations

Structure

Service (virtual
infrastructure)
information

GENUS Proof-of-concept
implementation

Composite object:

 Service Id

 Service description

 Start/end date

Reservation Id GENUS Proof-of-concept
implementation

Simple object – reservation Id

Reservation status Facility Proof-of-concept
implementation

Composite object:

 Reservation Id

 Reservation status

Table 6.6: Information exchange during service participation – resource release

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

111

Implementation of this feature has been finalised and it is ready for GENUS integration.

6.4 Implementation of NREN and GÉANT adaptors

The GENUS prototype aims to support MANTYCHORE (IP/L2 virtualisation) and OFELIA (OpenFlow)

virtualisation systems as well as the GÉANT AutoBAHN tool. Development of adaptors for MANTYCHORE and

OFELIA is in its final stage (a test and debugging period) while development of the adaptor for AutoBAHN has

been finalised and its prototype is ready for GENUS integration.

6.5 Implementation of unified user interface

The GENUS unified user interface has been implemented and its first prototype is ready for integration with the

GENUS system. The current user interface supports the following functionalities:

 Manual facility and resource registration.

 Resource listing.

 Virtual infrastructure request submission.

The figures below show screenshots of the GENUS unified user interface.

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

112

Figure 6.8: GENUS unified user interface: main menu

The user interface provides the following functionalities:

Service / Functionality Description

Service (i.e. GENUS
service)

Displays status of available infrastructures, their resources and their capability. It
also allows the user to request and create virtual infrastructures using available
resources.

Map Provides a graphical representation of available resources and their capability.

External Facility Allows the management of GENUS-registered infrastructures, their capabilities
and their properties.

Facility registration Allows the registering of an infrastructure or part of an infrastructure in the GENUS
system.

Settings Used for configuring the GENUS system.

About GENUS Provides access to information about GENUS and its capability including help and
user manual.

Table 6.7: GENUS user-interface functionality

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

113

6.5.1 GENUS virtualisation service interfaces

The GENUS virtualisation service (referred to in the user interface as Service) allows GENUS users to check

the current status of the available resources and to browse through the available resources, infrastructures and

their capability. It also provides the main service of GENUS, which is allowing users to request a virtual

infrastructure in the GENUS system.

Figure 6.9 shows a list of external registered facilities in the GENUS system, which is accessible via the

External Facility menu option. Users can browse through the registered infrastructures and facilities, and then

choose one infrastructure and browse through its available resources.

Figure 6.9: GENUS unified user interface: list of registered external systems

Figure 6.10: GENUS unified user interface: service for browsing available resources of an infrastructure or

facility

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

114

6.5.2 Facility registration interface

This service allows an infrastructure owner (NREN) who is willing to share its infrastructure (or part of its

infrastructure) to register its facility in the GENUS system. For an infrastructure to be registered in GENUS, it

has to deploy (fully or partially) one of the virtualisation mechanisms supported by GENUS (currently

MANTYCHORE and OFELIA) or Autobahn.

Figure 6.11: GENUS unified user interface: External facility registration menu

6.5.3 In development

Currently the GENUS development team is working on the implementation of the part of the user interface that

allows users to reserve resources and create a virtual infrastructure. Once this has been finalised, the first

prototype of GENUS will be ready for release.

6.6 First GENUS prototype release and current status

The first prototype of GENUS software integrating all the functionalities and features outlined above is

scheduled for release at the end of June 2012. A final set of results will be documented in a white paper entitled

“Full-Featured Virtualisation – Development, Demonstration and Use Cases”, due to be available in March

GENUS Prototype Design and Proof-of-Concept Implementation

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

115

2013. An overview of the current status of the GENUS prototype based on the status of the functions and

features is provided in Table 6.8.

Function / Feature Status

Facility registration Implementation has been finalised. Ready for GENUS integration.

Resource discovery Will not be available for the first release of the GENUS prototype.

Requesting a virtual infrastructure Implementation has been finalised. Ready for GENUS integration.

Decommissioning a virtual infrastructure Implementation has been finalised. Ready for GENUS integration.

Booking resources Implementation has been finalised. Ready for GENUS integration.

Releasing resources Implementation has been finalised. Ready for GENUS integration.

NREN & GÉANT adaptors:

 MANTYCHORE

 OFELIA

 AutoBAHN

 In final development stage (test and debugging period).

 In final development stage (test and debugging period).

 Finalised, Ready for GENUS integration.

Unified user interface:

 Service

 Map

 External Facility

 Facility registration

 Settings

 About GENUS

 Nearly complete.

 Complete.

 Complete.

 Complete.

 Complete.

 Complete.

Table 6.8: Overview of current status of GENUS prototype

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

116

7 GENUS Testbed

The GENUS testbed is comprised of resources kindly committed by the JRA1 Task 4 partners. Each partner

provides local facilities, which will be interconnected together either via dynamic network services offered by

the GÉANT core network or through the FEDERICA infrastructure.

Figure 7.1 presents a logical view of the GENUS testbed architecture.

Figure 7.1: Logical view of the GENUS testbed architecture

This chapter provides details of the testbed capabilities and describes how the project partners will be

interconnected to create a distributed GENUS testing environment.

GENUS Testbed

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

117

7.1 Testbed backbone

The testbed backbone will be used to interconnect project partners’ facilities. It will be based either on the

capabilities of services offered by the GÉANT core network or on the FEDERICA infrastructure.

7.1.1 FEDERICA infrastructure

Although the FEDERICA project itself has been terminated, the infrastructure is still in place and operational.

Currently all Network Operations Centre-related functions are handled by a team set up in the Poznań

Supercomputing and Networking Centre (PSNC). It has been agreed that the infrastructure can be used by

external researchers (e.g. GN3 project members) to perform disruptive or non-disruptive experiments. It has

also been specifically agreed that it will support GENUS demonstration activity.

7.1.2 Dynamic network services over GÉANT

In addition to using the FEDERICA infrastructure, GENUS will rely on existing GÉANT connectivity between

testbed partners. Currently all partners are connected to PSNC via GÉANT.

7.2 Local facilities attached to the testbed backbone

7.2.1 IP network infrastructure

HEAnet and i2CAT have offered their Layer 3 infrastructure for building the GENUS validation environment.

The infrastructure comprises a number of virtual IP routers (the exact number will be defined soon) and a

control framework – the MANTYCHORE software suite– to manage the physical/virtual infrastructure at HEAnet

and i2CAT.

7.2.2 OpenFlow testbeds

i2CAT and the University of Essex will construct a multi-layer, multi technology OpenFlow-enabled testbed

comprising of a Dense Wavelength-Division Multiplexed (DWDM) optical network domain, a Carrier Grade

Ethernet network domain and a campus Ethernet domain. The DWDM optical domain comprises of three ADVA

optical switching nodes. The team at Essex, in collaboration with ADVA, is developing a Layer 1 OpenFlow

controller for ADVA switches enabling partitioning (virtualisation) of the WDM for concurrent and independently

controlled Layer 1 network experiments.

The Carrier Grade Ethernet domain comprises of three OpenFlow-enabled Extreme carrier-class switching

nodes and the campus Ethernet domain comprises of four OpenFlow NEC Ethernet switches.

GENUS Testbed

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

118

7.2.3 AutoBAHN testbed

PSNC will offer an AutoBAHN testbed for GENUS prototype testing which will emulate the GÉANT BoD service.

7.2.4 Media laboratories

In 2008 PSNC began the creation of a 4K node in Poznań. It consists of devices that enable the recording,

storing, projecting and network streaming of movies with 4K resolution. In addition to the node offered by PSNC,

the University of Essex will provide access to very advanced ultra-high definition video sources (4K 3D and 8K)

which can generate high bit rate data streams (up to 20 Gbit/s) and be used as test applications for

experiments carried out over the facility. This will be used as the application test for the GENUS prototype

demonstration.

7.3 First GENUS prototype demonstration

The first demonstration of the GENUS software prototype over the testbed outlined above is scheduled for the

end of June 2012. It will demonstrate the subset of functionality described in Chapter 6 and GENUS’s capability

to create virtual infrastructure using resources from several testbeds. A final set of results and definition of

success criteria will be documented in a white paper entitled “Full-Featured Virtualisation – Development,

Demonstration and Use Cases”, due to be available in March 2013.

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

119

8 Conclusions

This deliverable has reported on a comparative study of several major infrastructure virtualisation frameworks,

both existing and under development, in Europe, USA and Japan. From the findings of this study it is evident

that the European research community, helped by the drive and commitment of the NRENs, has achieved

significant progress on infrastructure virtualisation technologies through projects such as OFELIA,

MANTYCHORE, NOVI and GEYSERS. These projects are complementary and, combined together, they can

provide virtualisation of Layer 1, Layer 2 and Layer 3 networks as well as computing resources.

JRA1 Task 4 has therefore focused on adopting the successful outcomes of these projects for a GÉANT

virtualisation service. Rather than proposing a specific virtualisation technology, the Task proposes an

integrated architecture approach that allows the different virtualisation technologies deployed across the

NRENs and GÉANT to be integrated, offering a multi-layer, multi-domain and multi-technology virtualisation

service. This approach enables each NREN to adopt one or multiple virtualisation technologies of their

choosing, depending on their requirements, and to offer to its users inter- and/or intra-domain as well as multi-

layer infrastructure virtualisation services.

This vision is realised through the proposed GENUS multi-layer, multi-domain virtualisation system for GÉANT

and its associated NRENs. The report has discussed the required functionality for operation support and

service of a virtualised infrastructure from both an operator and user point of view, as well as relevant issues.

The results of a drawback analysis of virtualisation deployment for NRENs and GÉANT were presented. The

analysis concluded that there are no major issues with regard to the technical features required for the

hardware and software to provide the necessary capabilities for virtualisation. However, apart from these purely

technical aspects, somewhat larger problems still exist, especially with regard to the operational environment,

the maturity of solutions and the area of security.

All these elements offer guidance with regard to virtualisation services in the GÉANT community, at the same

time as acknowledging the different requirements of the members of that community.

Finally, the report has described JRA1 Task 4’s prototype implementation of GENUS as well as the deployment

of a multi-domain and multi-layer virtualisation testbed for future improvement and investigation of issues

relevant to GENUS and the GÉANT virtualisation service.

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

120

References

[AKARI-ConceptualDesign] “New Generation Network Architecture: AKARI Conceptual Design”

http://akari-project.nict.go.jp/eng/concept-design/AKARI_fulltext_e_preliminary_ver2.pdf

[Argia] E. Grasa, S. Figuerola, A. Forns, G. Junyent, J. Mambretti, “Extending the Argia Software with

a Dynamic Optical Multicast Service to support High Performance Digital Media", accepted for

publication in Elsevier journal of Optical Switching and Networking Volume 6, Issue 2, April

2009

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GX5-4VXMPRK-

1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=10

77462195&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10

&md5=d6a9240fe4221f8d93569fc5868870be

[Ether] [details of reference to be provided]

[Expedient] http://yuba.stanford.edu/~jnaous/expedient/docs/admin/install.html

[FEDERICA-DSA1.1] Deliverable “DSA1.1: “FEDERICA Infrastructure”

http://www.fp7-federica.eu/documents/FEDERICA-DSA1.1.pdf

[FlowVisor] Rob Sherwood, et al., “FlowVisor: A Network Virtualization Layer”, Oct 2009

www.openflow.org

[FlowVisor2] http://openflowswitch.org/wk/index.php/FlowVisor

[Fuse] Fuse ESB

http://fusesource.com/products/enterprise-servicemix/

[GEMBus] Diego R. Lopez, “The GEMBus Way: Delivering the Promise of the Internet of Services”

http://www.terena.org/activities/eurocamp/nov09/slides/20091118-GEMBus-EuroCAMP-

Budapest.ppt

[GENI] http://www.geni.net

[GENI-GDD-07-44] L. Peterson (ed.), “GENI: Global Environment for Network Innovations – Facility Design”, GDD-

07-44, March 2007

[GENI-Intro] Harry Mussman, “GENI: An Introduction”, 2011, GENI WIKI

[GENI-Overview] “The Global Environment for Network Innovations (GENI)”, April 2009

http://www.geni.net/wp-content/uploads/2009/04/geni-at-a-glance-final.pdf

[GENI-SFA] Larry Peterson, Robert Ricci, Aaron Falk, Jeff Chase “Slice-Based Federation Architecture”,

2010, GENI WIKI

[GENI-System] [details to be provided]

[GEYSERS-D1.1] GEYSERS deliverable D1.1 “Identification, Description and Evaluation of the Use Case

Portfolio and Potential Business Models”

http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_1.1.pdf

http://akari-project.nict.go.jp/eng/concept-design/AKARI_fulltext_e_preliminary_ver2.pdf
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GX5-4VXMPRK-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1077462195&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d6a9240fe4221f8d93569fc5868870be
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GX5-4VXMPRK-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1077462195&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d6a9240fe4221f8d93569fc5868870be
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GX5-4VXMPRK-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1077462195&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d6a9240fe4221f8d93569fc5868870be
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GX5-4VXMPRK-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1077462195&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d6a9240fe4221f8d93569fc5868870be
http://yuba.stanford.edu/~jnaous/expedient/docs/admin/install.html
http://www.fp7-federica.eu/documents/FEDERICA-DSA1.1.pdf
http://www.openflow.org/
http://openflowswitch.org/wk/index.php/FlowVisor
http://fusesource.com/products/enterprise-servicemix/
http://www.terena.org/activities/eurocamp/nov09/slides/20091118-GEMBus-EuroCAMP-Budapest.ppt
http://www.terena.org/activities/eurocamp/nov09/slides/20091118-GEMBus-EuroCAMP-Budapest.ppt
http://www.geni.net/
http://www.geni.net/wp-content/uploads/2009/04/geni-at-a-glance-final.pdf
http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_1.1.pdf

References

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

121

[GEYSERS-D2.1] GEYSERS deliverable D2.1 “Initial GEYSERS Architecture and Interfaces Specification”

http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_2.1.pdf

[GEYSERS-D3.1] GEYSERS deliverable D3.1 “Functional Description of the Logical Infrastructure Composition

Layer (LICL)”

http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_3.1.pdf

[GEYSERS-D3.2] GEYSERS deliverable D3.2 “Preliminary LICL software release”

http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_3.2-v1_final.pdf

[GEYSERS-D4.1] GEYSERS deliverable D4.1 “GMPLS+/PCE+ Control Plane Architecture”

http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_4.1.pdf

[GN3-DJ1.4.1] M. Campanella, P. Kaufman, F. Loui, R. Nejabati, C. Tziouvaras, D. Wilson, S. Tyley,

“Deliverable DJ1.4.1: Virtualisation Services and Framework Study”

http://www.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-09-

225%20DJ1.4.1v1.0%20Virtualisation%20Services%20and%20Framework%20Study.pdf

[GN3-DJ2.1.1] A. Sevasti, P. Vuletic, D. Kalogeras, M. Giertych, D. Parniewicz, D. Pajin, “Information

Schemas and Workflows for Multi-Domain Control and Management Functions [restricted

access]

[GN3-MJ2.1.1] “Definition of a Multi-Domain Control and Management Architecture”

https://intranet.geant.net/sites/Research/JRA2/T1/Documents/NMAv1.0.1.doc [PP - access

restricted to project participants]

[GoogleAEBlog] http://googleappengine.blogspot.com/

[Google-Intro] http://code.google.com/appengine/docs/whatisgoogleappengine.html

[IaaS] Infrastructure as a Service

http://www.iaasframework.com

[MANTYCHORE] MANTYCHORE website

http://www.mantychore.eu/

[MANTYCHORE-DoW] MANTYCHORE “Description of Work”

http://jira.i2cat.net:8090/download/attachments/3211820/MANTYCHORE+FP7+-+DoW+-

+Part+B+-+final+-+budget+removed.pdf

[MTurk] https://www.mturk.com/mturk/welcome

[Nakao1] Akihiro Nakao, “Network Virtualization as Foundation for Enabling New Network Architectures

and Applications”, IEICE Transactions on Communications, Volume E93.B, Issue 3, pp. 454-

457 (2010)

adsabs.harvard.edu/abs/2010IEITC..93..454N

[Nakao2] Akihiro Nakao, “Architectures and Testbeds Enabled Through Advanced Network Virtualization:

CoreLab and VNode Projects”, 3rd EU Japan Symposium on Future Internet

http://ec.europa.eu/information_society/activities/foi/research/eu-

japan/eujapan3/docs/nakao.pdf

[Nakauchi] Kiyohide Nakauchi, “Introduction to Network Virtualization Technologies in Future Internet

Research”, Asia FI Summer School (August 26, 2010)

www.asiafi.net/meeting/2010/summerschool/p/nakauchi.pdf

[NDLRef] https://noc.sara.nl/nrg/ndl/

[NICT] National Institute of Information and Communications Technology, Japan

[NOVI] http://www.fp7-novi.eu/

[NOVI-D3.1] NOVI deliverable “D3.1 State-of-the-Art Management Planes”

http://www.fp7-novi.eu/index.php/deliverables/doc_download/24-d31

http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_2.1.pdf
http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_3.1.pdf
http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_3.2-v1_final.pdf
http://www.geysers.eu/images/stories/deliverables/geysers-deliverable_4.1.pdf
http://www.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-09-225%20DJ1.4.1v1.0%20Virtualisation%20Services%20and%20Framework%20Study.pdf
http://www.geant.net/Media_Centre/Media_Library/Media%20Library/GN3-09-225%20DJ1.4.1v1.0%20Virtualisation%20Services%20and%20Framework%20Study.pdf
https://intranet.geant.net/sites/Research/JRA2/T1/Documents/NMAv1.0.1.doc
http://googleappengine.blogspot.com/
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://www.iaasframework.com/
http://jira.i2cat.net:8090/download/attachments/3211820/MANTYCHORE+FP7+-+DoW+-+Part+B+-+final+-+budget+removed.pdf
http://jira.i2cat.net:8090/download/attachments/3211820/MANTYCHORE+FP7+-+DoW+-+Part+B+-+final+-+budget+removed.pdf
https://www.mturk.com/mturk/welcome
http://ec.europa.eu/information_society/activities/foi/research/eu-japan/eujapan3/docs/nakao.pdf
http://ec.europa.eu/information_society/activities/foi/research/eu-japan/eujapan3/docs/nakao.pdf
http://www.asiafi.net/meeting/2010/summerschool/p/nakauchi.pdf
https://noc.sara.nl/nrg/ndl/
http://www.fp7-novi.eu/
http://www.fp7-novi.eu/index.php/deliverables/doc_download/24-d31

References

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

122

[NOVI-D4.2] NOVI Deliverable “D4.2: Use Cases”

http://www.fp7-novi.eu/index.php/deliverables/doc_download/26-d42

[NOX] www.noxrepo.org

[OFELIA] http://www.fp7-ofelia.eu/

[OpenFlow1] www.openflow.org

[OpenFlow2] Nick McKeown, et al., “OpenFlow: Enabling Innovation in Campus Networks”, ACM SIGCOMM

Computer Communication, Apr 2008

[Panlab] http://www.panlab.net

[PlanetLab]] http://www.planet-lab.org/

[Routing] D. Wilson, “Routing Integrity in a World of Bandwidth on Demand”, TNC 2006

http://www.terena.org/events/tnc2006/programme/presentations/show.php?pres_id=242

[SFAImpl] PlanetLab Implementation of the SFA

https://svn.planet-lab.org/browser/sfa/trunk/docs/sfa-impl-2009-04-07.pdf

[SFAOver] SFA Overview

http://svn.planet-lab.org/wiki/SFAGuide#SFAOverview

[SFAv1] “Slice-Based Facility Architecture”, Draft Version 1.04, April 7, 2009

https://svn.planet-lab.org/browser/sfa/trunk/docs/sfa.pdf

[SFAv2] “Slice-Based Federation Architecture”, Version 2.0, July 2010

http://groups.geni.net/geni/wiki/SliceFedArch

[VMWARE] http://www.vmware.com/

[VSERVER] Virtualization for GNU/Linux systems

http://www.linux-vserver.org/

[VxDLRef] http://www.ens-lyon.fr/LIP/RESO/Software/vxdl/home.html

http://www.fp7-novi.eu/index.php/deliverables/doc_download/26-d42
http://www.noxrepo.org/
http://www.fp7-ofelia.eu/
http://www.openflow.org/
http://www.panlab.net/
http://www.planet-lab.org/
http://www.terena.org/events/tnc2006/programme/presentations/show.php?pres_id=242
http://svn.planet-lab.org/wiki/SFAGuide#SFAOverview
https://svn.planet-lab.org/browser/sfa/trunk/docs/sfa.pdf
http://groups.geni.net/geni/wiki/SliceFedArch
http://www.vmware.com/
http://www.linux-vserver.org/
http://www.ens-lyon.fr/LIP/RESO/Software/vxdl/home.html

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

123

Glossary

AA Authentication and Authorisation

AAA Authentication, Authorisation and Accounting

AAI Authentication and Authorisation Infrastructure

AM Aggregate Manager

API Application Program Interface

ASIC [definition to be provided]

ASON Automatically Switched Optical Network

BGP Border Gateway Protocol

CCI Connection Controller Interface

CIFS Common Internet File System

CLI Command Line Interface

CM Component Manager

CMI Customer Management Interface

CoMaR Service Configuration and Activation

CPS Circuit Processing System

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

DIOA Distributed Interface Oriented Architecture

DWDM Dense Wavelength-Division Multiplexed

EC2 Amazon Elastic Compute Cloud

ESB Enterprise Service Bus

eTOM TM Forum’s Enhanced Telecom Operations Map

e-VLBI electronic Very Long Baseline Interferometry

EXPReS Express Production Real-time e-VLBI Service

FAB Fulfilment, Assurance, and Billing and Revenue Management

FCAPS Fault, Configuration, Accounting, Performance, Security

FCS Fast Circuit Switch

FI Future Internet

FIRE Future Internet Research and Experimentation

FOAM FlowVisor OpenFlow Aggregate Manager

FPGA Field Programmable Gate Array

G
2
MPLS Grid GMPLS

GEMBus GÉANT Multi-domain Bus

GENI Global Environment for Network Innovation

GENUS GÉaNt virtUalisation Service

Glossary

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

124

GGID GENI Global Identifier

GLIF Global Lambda Integrated Facility

GMC GENI Management Core

GMPLS Generalised Multi-Protocol Label Switching

GPO GENI Project Office

GRE Generic Routing Encapsulation

GSS-API Generic Security Services API

GUI Graphical User Interface

HDN Health Data Network

HR Human Resource

IaaS Infrastructure as a Service

ICT Information and Communication Technology

IMF Information Modelling Framework

InMaR Service Information Management

InP Infrastructure Provider

IP Internet Protocol

IPNaaS IP Network as a Service

iSCSI Internet Small Computer System Interface

ITU International Telecommunication Organisation

JIVE Joint Institute for Very Long Baseline Interferometry in Europe

JRA1 GN3 Joint Research Activity 1, Future Network

JRA1 T4 JRA1 Task 4, Current and Potential Uses of Virtualisation

KVM Kernel-based Virtual Machine

LHC Large Hadron Collider

LICL Logical Infrastructure Composition Layer

LR Logical Resource

LXC Linux Containers

MaR Management Resource

MPLS Multi-Protocol Label Switching

MRTG Multi-Router Traffic Grapher

NaaS Network as a Service

NAS Network Attached Storage

NCP Network Control Plane

NEXPReS Novel Explorations Pushing Robust e-VLBI Services

NFS Network File System

NGOSS Next Generation Operations Support System

NIC Network Interface Controller

NIPS Network + IT Provisioning Service

NIPS UNI Network + IT Provisioning Service User-Network Interface

NLI NCP-LICL Interface

NLR National Lambda Rail

NMS Network Management System

NOVI Networking innovations Over Virtualised Infrastructures

NREN National Research and Education Network

NSF National Science Foundation (US)

OE Orchestration Engine

Glossary

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

125

OFELIA OpenFlow in Europe: Linking Infrastructure and Applications

OFIAS OpenFlow Switch In A Slice

Op-VNI Optical Virtual Network Infrastructure

OS Operating System

OSPF Open Shortest Path First

OSS Operations Support Systems

PaaS Platform as a Service

PCE Path Computation Element

PCI Peripheral Component Interconnect

PCN Programmable Core Nodes

PEC Programmable Edge Clusters

PEN Programmable Edge Nodes

PF Programmable Framer

PIP Physical Infrastructure Provider

PLC PlanetLab Consortium

PoMaR Service Policy Management

PoP Point of Presence

PP Packet Processor

PPS Packet Processing System

PR Physical Resource

PSNC Poznań Supercomputing and Networking Centre

PTM Panlab Testbed Manager

PWN Programmable Wireless Nodes

QuMaR Service Quality Management

R Registry

R&E Research and Education

RA Resource Adapter

RAL Resource Adaptation Layer

REST Representational State Transfer

RIP Routing Information Protocol

RP Resource Provider

RSpec Resource Specification

S3 Simple Storage Service

SaaS Software as a Service

SC Service Consumer

SCS Service Consumer Stack

SDH Synchronous Digital Hierarchy

SFA Slice-based Federation Architecture

SLA Service Level Agreement

SLI SML to LICL Interface

SLS Service Level Specification

SM Slice Manager

SML Service Middleware Layer

SMP Symmetric Multiprocessing

SNIA Storage Network Industry Association

SNMP Simple Network Management Protocol

Glossary

Deliverable DJ1.4.2:
Virtualisation Services and Framework –
Study
Document Code: GN3-12-123

126

SOA Service-Oriented Architecture

SSH Secure Shell

SSM Shared Storage Model

STREP Specific Targeted Research Project

STS Security Token Service

TM Forum TeleManagement Forum

TrMaR Service Trouble Management

UCLP User-Controlled Lightpath Provisioning

UHDM Ultra High Definition Media

UML Unified Modelling Language

URI Universal Resource Indicator

VCT Virtual Customer Testbed

VI Virtual Infrastructure

VIMS Virtual Infrastructure Management System

VIO Virtual Infrastructure Operator

VIP Virtual Infrastructure Provider

VITM Virtual IT Manager

VLAN Virtual Local Area Network

VM Virtual Machine

VNC Virtual Network Controller

VNE Virtual Network Embedding

VNet Virtual Network

vNIC Virtual Network Interface Card

VNO Virtual Network Operator

VNP Virtual Network Provider

VNS Virtual Network Service

vOFS Virtual OpenFlow Switches

VOSS Virtualised Operations Support Service

VPC Virtual Private Cloud

VPN Virtual Private Network

VR Virtual Resource

VRP Virtual Resource Pool

vSMP Virtual SMP

vSwitch Virtual Switch

WDM Wavelength-Division Multiplexing

WoR Worker Resource

WS Web Service

WSS Wavelength Selective Switch

XML Extensible Markup Language

